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ABSTRACT

With development of machine learning and deep learning fields, the importance of unsu-
pervised learning algorithms also increases. One of these algorithms is Gaussian-Bernoulli
Restricted Boltzmann Machines (GBLRBMSs), which are capable of modelling real-valued
data. Moreover, GBLRBMs are used to pretrain weights in artificial neural networks,
which improves performance of these networks. In this work, we analyze the role of hidden
bias in representational efficiency of the Gaussian-Bipolar Restricted Boltzmann Machines
(GBPRBMs), which are similar to the widely used Gaussian-Bernoulli RBMs. Our experi-
ments show that hidden bias plays an important role in shaping of the probability density
function of the visible units. Correspondingly, we define hidden entropy and propose it as a
measure of representational efficiency of the model. By using this measure, we investigate
the effect of hidden bias on the hidden entropy and provide a full analysis of the hidden
entropy as function of the hidden bias for small models with up to three hidden units. We
also provide an insight into understanding of the representational efficiency of the larger
scale models. Furthermore, we introduce Normalized Empirical Hidden Entropy (NEHE)
as an alternative to hidden entropy that can be computed for large models. Experiments
on the MNIST, CIFAR-10 and Faces data sets show that NEHE can serve as measure of
representational efficiency and gives an insight on minimum number of hidden units required

to represent the data.
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OZETCE

Son zamanlarda yapay 6grenme ve derin 6grenme alanlarinin yayginlagmasiyla egiticisiz
ogrenme yontemlerinin 6nemi artmaktadir. Gauss-Bernoulli Kisitli Boltzmann Makineleri
(KBM) gergel veriyi modelleyebilme 6zelligine sahip bu yontemlerden birisi olarak yapay sinir
aglarinin agirhiklarinin 6n egitiminde kullanilmaktadir. Bu tezde Gauss-Bernoulli KBM’lerine
benzer Gauss-Iki Kutuplu KBM’lerinin betimleyici verimliliginde gizli yanhliklarin roliinii
inceledik. Caligmalarimizda gizli yanhliklarin goriiniir birimlerin olasilik yogunluk iglevinin
sekillendirilmesinde 6nemli rol oynadig1 gordiik. Bu dogrultuda, modelin betimleyici ver-
imliligi icin yeni bir gizli entropi 6l¢iitli tanimladik. Bu 6lgiitli kullanarak, gizli yanhliklarin
gizli entropiye olan etkisini inceledik. Ayrica en fazla ii¢ gizli birim igeren kii¢ciik modellerin
gizli entropinin gizli yanhliklarin cinsinden tam analizini sunduk. Daha biiyiik modeller i¢in
betimleyici verimliligin nasil davrandigimi incelemek i¢in gizli entropiyi yaklagiklayan Nor-
malize Edilmig Gorgiil Entropi (NEGE) ol¢iittint tamimladik. MNIST, CIFAR-10 ve Yii-
zler veri kiimesi iizerinde yapilan deneyler, bu yaklagtirimin betimleyici verimliligin Ol¢iisii
olarak kullanilabilecegini ve veri kiimesini tasvir edebilmek i¢in gereken asgari gizli birim

sayis1 hakkinda fikir verebilecegini gostermektedir.
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Chapter 1

INTRODUCTION

Recently, the subject of Restricted Boltzmann Machines (RBMs) and deep learning be-
came the focus of attention in machine learning research. Application of deep learning in
different areas such as image processing, computer vision, and natural language processing
has proved its efficiency |1, 2, 3]. RBMs are probabilistic generative models which are used
to obtain new (usually compressed) representation of the data. Different types of RBMs
are used as building blocks for deep neural architecture by means of unsupervised layer-wise
pre-training [4]. However, RBMs with real-valued inputs are of primarily importance as
most of the analyzed data is real-valued. Conventional Bernoulli-Bernoulli RBMs have been
studied in [5, 6] and [7] where they are referred as universal approximators of any binary
distribution. One of the first Gaussian-Bernoulli RBM (GBLRBM) models with real-valued
inputs was proposed in [4] and [8], and was explicitly analyzed in [1]. Another version of
a GBLRBM with a more intuitive energy function was proposed in [9]. Moreover, a more
simplified sub-type of the latter model was analyzed in [10] and [11].

Despite the ongoing research in this field, still not much is known about the principle
of operation of GBLRBMs. Combinatorial nature of the model makes the analysis even
harder. Nevertheless, conceptual understanding of GBLRBMs is given in [10]. The thesis
has a well-described comparison to a Gaussian mixture model and a good visualization of
the modelled distribution that gives an insight into the principle of operation of GBPRBMs.
However, the thesis lacks analysis of hidden bias and its effect on the modelled probability
density function. The effect of the biases and the mean of the data on the learning process
was investigated in [12] and [13]. Visible and hidden offsets are used to center the RBM
model and make learning more stable.

Another interesting visualization of RBMs is given in [14]. Debugging of the RBMs is

done by visualizing weight parameters as a tensor in a cube filled with small cells. Evaluation
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of histograms of the parameters on the mini-batch helps finding optimal stopping point for
the training process. Disappearance of Gaussian-like shapes of the histograms indicates
that training has converged to a stationary phase. This phenomenon was analyzed in [15].
A measure of non-Gaussianity based on negentropy and excess kurtosis was proposed as a
stopping criterion for the training.

The problem of measuring usefulness of the hidden neurons was investigated in [7, 6]
and [16]. The first two papers describe the effect of augmenting hidden layer on the repre-
sentational efficiency of Bernoulli-Bernoulli RBMs. In the latter paper, mutual information
between visible and hidden units is suggested as a measure of relevant activity of the hidden
units. Usefulness of the hidden neurons is also tested by pruning neurons after training and
by adding neurons during training. The results show that models initialized with a large
number of hidden units can be simplified by pruning neurons without decreasing classifica-
tion performance.

Nowadays, most of the research in deep learning is concentrated on application of RBMs
and speeding up the training process. Fundamental questions remain still unanswered.
What is a good measure for usefulness of the hidden neurons? How does the hidden bias
affect the representational efficiency of the RBM model? What is the number of hidden
neurons needed to represent the data? We try to answer these questions by introducing
a new Gaussian-Bipolar RBM (GBPRBM) model, in which we investigate representational
efficiency of hidden units in defining distribution of the visible units. This model is very
similar to Gaussian-Bernoulli RBM except that it has a more symmetrical geometry which
facilitates hidden entropy analysis described in Section 3.

Our contributions are summarized as follows:

e In Section 3, we define hidden entropy function and propose it as a measure of repre-
sentational efficiency of GBPRBM models. We demonstrate how hidden bias shapes
probability distribution of visible units. Moreover, we present a list of conditions
needed to attain maximum hidden entropy. Also we provide a full analysis of the hid-
den entropy function for models with up to three hidden units. In this analysis, regions
of high hidden entropy are given analytically in terms of other model parameters. This

analysis provides an intuition to visualize hidden entropy space in higher dimensions.
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e In Section 4, we propose a technique to measure activations of hidden units by defining
Normalized Empirical Hidden Entropy (NEHE) function as an upper bound to the
hidden entropy. This function allows to analyze models with higher number of hidden
units. By measuring NEHE on the GBPRBM models trained using MNIST, CIFAR-10
and Faces data sets, we illustrate how number of hidden units affects representational
efficiency of the GBPRBM models. This experiment gives an insight on the minimum

number of hidden units needed to represent the data.

Findings and derivations in the paper are presented using examples. The reference GBPRBM
model given in Section 2.1 and its derivative models with smaller number of hidden and
visible units are used in visualization of the probability of visible units and the hidden

entropy function.
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Chapter 2

GAUSSIAN-BIPOLAR RESTRICTED BOLTZMANN MACHINES

Gaussian-Bipolar Restricted Boltzmann Machine (GBPRBM) is an undirected graphical
model which is used to model relation between wvisible and hidden units in a probabilistic
way. GBPRBMSs have real-valued inputs in the visible layer and binary units in the hidden
layer.

Let the input vector with real-valued visible units be of size V such that v = [v; va ... vy]T.
Binary hidden units are constrained to have antipode values {—1, 1} and grouped into a col-
umn vector h = [hy hy ... hH]T with H being the number of hidden units. For notational
consistency, visible units are represented by vectors v, u, hidden units - by vectors f,h, g
throughout the paper. Subscripts 7, j are reserved for visible and hidden units, respectively.

Two more parameters are associated with visible units. The first one is visible bias term
by and the second one is visible variance term o; where ¢ € {1,...,V}. Bias terms are also
present in the hidden units as: b?, jeA{l,...,H}. Visible and hidden units are connected
using weights w;;, i € {1,...,V}, j € {1,...,H}. The relationship between visible and

hidden units is described by the energy function
1
E(v,h)= 5(v—lov)Tzrl(v—bU)—VTS:*1W11— b’ h, (2.1)

which is defined similarly for the Gaussian-Bernoulli RBM model in [9] with parameters

2
wl,l w172 o . wl,H 0'1 0 “e 0
2

w271 w272 . e w27H 0 0-2 . e 0

W= , B= ,
2
_wa wv72 P wV,H_ | 0 0 P UV_
T h 1h h T

bv:[g,bg,...,bg] , bh:[bl,bQ,...,bH} : (2.2)

The energy function is used to define joint probability density function (pdf) of v and h

B exp(—E(v,h))
PR = e~ B(u,g))du’ (23)
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where [ (...)du is integration over all space of visible units and Zg is summation over all

2 configurations of hidden vector g. Likewise, conditional probability of the visible vector

v given hidden vector h is defined as

_p(v,h)  exp(=FE(v,h))
p(vh) = p(h) [ exp(—E(u,h))du
=N (v; [b, + Wh], ), (2.4)

where N (v; p, ) is a multivariate Gaussian distribution with mean vector g and covariance
matrix 3. Since ¥ is diagonal, the conditional pdf can be represented as product of marginal
conditional pdfs of each visible unit:

%4 \%4

p(vih) = [TV (v B + Wb, of) = [ [ p(vilb). (2.5)

=1 =1

Detailed derivations of p(v|h) can be found in A.1.

2.1 Data Modeling Using Probability of Visible Units

Restricted Boltzmann machines have been used as unsupervised learning algorithms to ex-
tract latent features and to model the data distribution. This corresponds to clustering
in the space of visible units and encoding each cluster using hidden units. Nevertheless,
RBMs are probabilistic models, and a more straightforward interpretation of the data mod-
eling is representing the data distribution as probability of visible units p(v). The proposed
GBPRBM has a probability of visible units given as

p(v) =Y _p(h)p(v|h)
h
=3 " p(h) x N (v; [b, + Wh, ). (2.6)
h

This implies that a GBPRBM models the probability of observing v as a Gaussian Mixture
Model (GMM). Every Gaussian component with covariance matrix X is scaled by mixture
weight p(h) and located at [b, + Wh].

Visualizations of p(v) of submodels with dimension V' equal to 1, 2 and 3 are shown in

Figure 2.1. In order to exemplify and visualize the underlying spaces, a sample geometry is
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set with model parameters of three visible units as:

10 6 2 —57.3333

Wr=|_6 4 2|, byl = | -25.3333] (2.7)
1 3 5 15.5556
2 R [ T

ER:1.5 Iv, bv: 8 b5 3] )

where Iy is an identity matrix of size (V x V). Sub- and superscripts R denote reference
model, whose derivatives will be used throughout the paper. Weight matrix W and visible
bias b, define geometry for the model. Covariance matrix 3 determines shape of the Gaus-
sian components, which can be also considered as a geometrical parameter. On the other
hand, hidden bias by, controls expression of the Gaussian components. Figure 2.1(c) shows
5000 samples drawn according to p(v) given in (2.7). The model’s geometry is also outlined
on the same plot. Position of Gaussian components is labeled by values of the hidden vector
[h1, ha, hs]. Planes perpendicular to the weights represent decision boundaries for p(h;|v)
and will be discussed in the subsequent sections. The main observation here is that for the
given value of by, only four Gaussian components are expressed. This value of by, is chosen
in a way that the maximum number of the components are activated for a given geometry
and covariance matrix. Magnitudes of the other components are negligibly small.

If we reduce number of visible units to two (V' = 2), then the new p(v) will resemble a
projection of the old p(v) with three visible units into the space of the first two visible units

(see Figure 2.1(b)). In this case, new model parameters are defined by
W = Wg(1:2,:), b, = bf}(1:2), T = Zp(1:2,1:2), (2.8)

where “1:2” (“1 to 27) and “” (“all”) denote indices of the matrices and vectors. Since
geometry has changed, the value of hidden bias by, should be changed as well so that the
same Gaussian components are activated. In such a scenario, the recomputed value of by, is

given as
b$ = [~52.4444, —16.0000, 13.3333]7. (2.9)

This value should be taken as is for now, because equations according to which it was
computed is given in Section 3.5. Superscript C will be useful to differentiate this point in

the space of hidden bias in the following sections. If the old value of by, were used, just only
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one Gaussian component would be active. This shows how p(v) is sensitive to perturbations

in the hidden bias. Similarly to the three-dimensional case, the model’s geometry, Gaussian

components’ labels and decision boundaries for p(h;|v) are shown on the same plot.
Further reducing number of visible units to one, yields p(v) show in Figure 2.1(a). Like-

wise, new model parameters are defined by

W = Wg(1,:), b, = bZ(1), 6% = Zx(1,1), (2.10)

v

and hidden bias is set to by, = [-71.1111, 0, 7.1111]T such that the same Gaussian com-
ponents are expressed. Hidden vectors, which determine position of these components, are
shown under leafs of the binary tree and has the following format: [h1, ha, h3]?T. Widths of
the leafs represent columns of the matrix W. Note that Gaussian components encoded by
[-1,—1,—1]7 and [~1, —1,4+1]7 are subject to merging due to superposition. Such compo-
nents which are close to each other and which have large enough o2 tend to combine and

look like a single Gaussian distribution.

2.2 Interpretation of Hidden Units

Suppose that for a given training data set of visible vectors {vs, s € D} some suitable
GBPRBM model parameters {W, X, b,, by, } were estimated. In this case, another interpre-
tation of the GBPRBM operation is vector quantization. Centroid coordinates are given by
[b, + Wh] where h encodes the path to the centroid. Given visible vector v, the codeword
of the centroid, which is most likely to model the vector v, can be found by using conditional

pdf p(h|v) which is defined as

H
e I;Il p(hjlv)
1liI[eX ( < i= 102w”+b )) (2.11)

2 cosh (ZYZI ZSw;j + bj)

It follows that every hidden unit of the codeword can be encoded separately using these two

p(h|v) =

equations

p(hj = —1|v) = sigm (—2 (vTZ_IW(:,j) + b?)) ,

p(hj=+1yv)=sigm( (Tz W, )+bh)) (2.12)
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where “sigm” is the sigmoid function. Argument of this function is a hyperplane depicted
by vISTIW(:, j) + b;‘ = 0. It is a decision boundary for two V-dimensional half-spaces
pertaining to h; = +1 and h; = —1. Let us consider a case with V = 3 and ¥ = o1,
then vIW(:,j) + 02b§»I = 0 is a plane perpendicular to weight W(:,j). Orthogonality
of this decision boundary is shown in Figure 2.1(c). For V = 2, decision boundary is a
line perpendicular to weight W(:,j) as seen in Figure 2.1(b). For the smallest dimension
(V' =1), decision boundary becomes a point as shown in Figure 2.1(a). Hidden bias plays
an important role by setting position of the hyperplane in this V-dimensional space. A more

detailed derivation of p(h|v) can be found in A.2.

2.3 Relationship Between the GBPRBM and the GBLRBM Models

The intoduced GBPRBM architecture is similar to the GBLRBM model. The only difference
in definition of these models is that a hidden unit can take values {—1,+1} in GBPRBM
and {0,1} in GBLRBM. Parameters of the GBPRBM can be converted to geometrically

equivalent GBLRBM parameters using linear transformation given as

b,?BL — bg’BP + WGBP(—]_)

WOEBL — oW GBP, (2.13)

where superscripts denote the model and (—1) is a negated all-ones vector of size (H x1). An
example of geometrically equivalent GBPRBM and GBLRBM models is shown in Figure 2.2.
Although positions of the Gaussian components in the probability of visible units for both
models are same, the probability of visible units of these models will be different but can

share some similar characteristic.
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Figure 2.1: Probability of visible units p(v) for a model with (a) V' =1, (b) V = 2 and (c)

V = 3. Model geometry and decision boundaries for p(h;|v) are also shown.
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Chapter 3

HIDDEN ENTROPY AS A MEASURE OF REPRESENTATIONAL
EFFICIENCY

As was stated in Section 2.1, probability of hidden units p(h) controls the expression of
Gaussian components in the probability of visible units p(v), which is used to model the
data. Numerical evaluations show that p(h) is usually far away from being uniform and only
few out of 2/ configurations of the hidden vector h are active, which results in low hidden
unit entropy.

Certainly, each cluster in the distribution can be encoded by a single hidden unit, which
activates only one the 2 hidden vector configurations. This is extremely inefficient and
is not desired due to excessive complexity of the model. Moreover, training large models
is computationally expensive, especially if the number of visible and hidden units is in the
order of thousands. Ideally, it would be optimal to model the given data using a small
number of hidden units by wisely choosing the model geometry {W, X, b,} and setting
proper hidden bias terms. Therefore, activation of as many hidden vector configurations
as possible is desired and makes it feasible to model the data using a smaller number of
hidden units. As a consequence, in order to activate as many hidden vector configurations
as possible, we need to maximize entropy of the hidden units. Correspondingly, entropy of

the hidden units, which will be called “hidden entropy” thereafter, is defined as
H(h) = - p(h)log, p(h), (3.1)
h

where probability mass function of hidden units is given as

Joexp(=E(v,h))dv  exp(A(h))
Y exp(—E(u,g))du 3 exp(A(g))
u g g
_ exp (b 'Wh + Jh" WS "'Wh + b} h)

Y gexp (bIZ1Wg + jgTWTE-1Wg + bl g)’

p(h) = / p(v,h)dv=

(3.2)

whose derivation is given in A.3.
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3.1 Hidden Bias Analysis

Having defined the hidden entropy function in (3.1), it would be interesting to see how the

hidden bias term affects probability of hidden units and hence the hidden entropy. In order

to analyze the effect of the hidden bias, the first step would be to eliminate the term which

depends on the visible bias in (3.2) by setting hidden bias to by, = —~W?X~!b,. In this

scenario, the probability mass function of hidden units reduces to
exp (shTWT'E~1Wh)

Zg exp (%gTWTE_1Wg)
exp (3I1="¥Wh]3)

pu— 1 .
S (31T W)

p(h) =

(3.3)

The term ||27%WhH2 is the Mahalanobis distance between vector Wh and the origin. Due
to the exponential nature of the numerator and denominator functions in p(h), the values
with large distances get boosted and values with smaller distances get suppressed yielding a
pmf with only most distant components which are active. Usually, depending on the distance
HE_%Wth for various hidden vectors h’s, two most distant components with configurations

hp and —hp are activated:
hp = argmax || S~ 2 Wh|, (3.4)
h

However, depending on W, other components with the same or similar distances can be
activated as well.

An example illustrating activation of two most distant components is shown in Fig-
ure 3.3(c). The figure portrays probability of visible units p(v) for a model with two visible

units where parameters were set as
W = Wg(1:2,1:2),b, = b2(1:2), & = Zp(1:2,1:2). (3.5)

Here Mahalanobis distance corresponds to Euclidean distance because covariance matrix
3 is a scaled version of an identity matrix, i.e. X = ¢2I. The hidden bias was set to
by, = —WTX~1b, so that two most distant components are activated. Note that all decision
boundaries for p(h;|v) pass through point b,,.

From now on, the point b} = —WTX~1b, in the hidden bias space will be denoted by

superscript “*” since it possesses a property of being the center of symmetry of the hidden
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bias vs. hidden entropy plot. This can be seen from Figure 3.3(a) and Figure 3.4(a) and

will be discussed in Section 3.3.

3.2 Conditions to Attain Maximum Hidden Entropy

Suppose that the number of visible units is greater or equal to the number of hidden units
(V > H) and the hidden bias is set to the center of symmetry point by, = b} described

above. Furthermore, let the weight matrix W have a form of
1 1
W =32U=3%X2[u ... ugl, (3.6)

where U is a matrix with orthogonal columns, such that u; € RY for j € {1,...,H}, and
for all distinct pairs of j,k € {1,..., H}, the inner product ujTuk = 0. Plugging given W
into (3.3) yields

exp (3= (ZEURJ3)
Seew (LI(S7H(2EU)g)3)

o (3L IwIE) 4

_ S (3.7)
Sgexp (3 20 ul3)

p(h) =

2H

In this scenario, all of the 2/ hidden configurations become equiprobable and the hidden
entropy reaches its maximum value of H bits. To visualize this phenomenon, a GBPRBM
model with orthogonal weights W(:,1) and W(:,2), which satisfy the condition given in

(3.6) with parameters

-9 2 22 11
W = 72 = 7b’U = 9
2 -9 0 22 12
* T —1 T
b, = -W'¥""b, = [—30.75, 21.50 (3.8)

is analyzed. Probability of visible units for this model is plotted in Figure 3.1(b). As seen
from the figure, four Gaussian components are active. In Figure 3.1(a), empirical evaluation
of hidden entropy #(h) as a function of hidden bias is shown. The hidden bias value listed in
(3.8) is a red point located at the intersection of two lines. It has a hidden entropy value of
2 bits and activates four Gaussian components. A more detailed analysis of hidden entropy

as a function of hidden bias will be given in the next section.
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In summary, maximum hidden entropy of H bits can be obtained if V"> H and W has
an orthogonal geometry as in (3.6). Such a setup is very restrictive and cannot model data
in real world. Moreover, for V' < H or any other non-orthogonal geometry, the underlying
pmf will be more far away from uniform distribution and hidden entropy will be always less
than H. However, maximally useful utilization of hidden units is achievable if a necessary
number of Gaussian components, which are needed to model the data, are parametrized by
a convenient geometry, in which minimum number of hidden units is used. This is possible

only if the hidden entropy is high.

(a) Hidden entropy [bits]

-35 -30 -25
b, (1)

Figure 3.1: (a) Hidden entropy as a function of hidden bias by, for a model with parameters
{W,3X,b,} listed in (3.8). Intersection of two 1-bit regions (lines) is a 2-bit point b} =
~WTx~1pb,. (b) Probability of visible units for the same model geometry and a hidden
bias set to point b}, shown on the left. In this case, hidden entropy attains its maximum
value of H = 2 bits and all four (2¥) Gaussian components are activated. All parameters

of the model are listed in (3.8).

3.3 Numerical Evaluation and Analytical Description of Hidden Entropy as a
Function of Hidden Bias

In order to obtain a complete understanding of how the hidden bias affects the hidden

entropy, a visualization of the hidden entropy as a function of the hidden bias is needed.
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For this purpose, all other model parameters {W, X, b,} are fixed and the hidden entropy
defined in (3.1) is evaluated as a function of the hidden bias by,. In all analyses provided here,
the target space of by, is centered around point b; and divided into a grid with 150 x 151
samples.

The analysis of the effect of hidden bias on hidden entropy is conducted for models with
1, 2 and 3 hidden units. In the simplest case, numerical evaluation of the hidden entropy as

a function of the hidden bias term for a GBPRBM model with parameters
W = Wg(:;,1), b, =bll, ¥ =g, (3.9)

is shown in Figure 3.2(a). Here hidden entropy can be found analytically. Setting ¢ :=
b + wl'S~1b,, where b} is hidden bias, yields probability mass function
exp (%th2*1wh + ch)
> g XD (2gwTE 1wy + cg)
exp (ch) _exp(ch)
> get1€xp (cg) ~ 2cosh (c)’

p(h) =

(3.10)

which is independent of the model parameters. Plugging calculated values of p(h) into (3.1)

results in hidden entropy equal to

Hh) = — 3 p(h) log, p(h)
he£l
¢ - tanh(—c) + In(2 cosh(c))

= . 11
In2 (3.11)

The maximum value of the hidden entropy (#(h) = 1 bit) is achieved when ¢ = 0, which
complies with conditions listed in Section 3.2. Analytical evaluation of (3.11) for model
parameters listed in (3.9) is shown in Figure 3.2(b) and it matches empirical evaluation of
the same function shown in Figure 3.2(a).

For a model with two hidden units (H = 2) and parameters {W, X, b, } listed in (3.5),
a plot of the hidden entropy as a function of the hidden bias is shown in Figure 3.3(a).
Dark blue regions activate only one configuration of hidden vector and have entropy close to
zero. Yellow and crimson regions on the plot activate two and three Gaussian components
in p(v), respectively. Points located at these two regions are b} and bg . Setting hidden bias
to these two points yields p(v) as shown in Figure 3.3(c) for b} and Figure 3.3(d) for by. As

can be seen from Figure 3.3(a), regions of by, with high hidden entropy comprise of vertical,
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(a) Hidden entropy [bits] (experiment) (b) Hidden entropy [bits] (theory)

0.5 0.5

|
1
1
1
b
1
1

-28 -26 -24 -22 -20 -28
bh( 1 ) b, ( 1 )

Figure 3.2: (a) Empirical evaluation, and (b) theoretical model of hidden entropy H(h) as a
function of hidden biases b} for a model with parameters listed in (3.9). Empirical evaluation
consists in computation of the hidden entropy using (3.1) at every point of the hidden bias

space. Theoretical model is based on plotting (3.11) as a function of b’f mapped through c.

horizontal and diagonal lines intersecting at some points. Explanation of this phenomenon
is given in the next sections. Note that hidden entropy plot has a symmetry with respect to
point b} .

The largest visualizable model of hidden entropy as a function of by has three hidden
units (H = 3). The easiest way to visualize this function is to draw an isosurface at certain
hidden entropy level. In Figure 3.4(c), a 0.85-bit isosurface of hidden entropy as a function
of hidden bias is shown for a model with parameters {W, X, b, } listed in (2.8). Similarly to
the model with two hidden units, high entropy regions consist of planes with one-bit hidden
entropy which intersect at some points. The plot is also symmetrical around the point bj.
Further experiments with decreasing the isosurface level show that the rate of change in
value of by, with respect to the isosurface level is very fast. This means that a vast region
of the hidden bias space has hidden entropy almost equal to zero. In the space of p(v) this
corresponds to activation of a single Gaussian component only. Such a sparse distribution
of high hidden entropy regions emphasizes the importance of hidden bias in representational
efficiency of GBPRBMSs. For this reason, modeling by, analytically in terms of other model
parameters {W 3 b,} is crucial. In the next section, a strategy to model high hidden

entropy regions is presented.
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(a) Hidden entropy [bits] (experiment) (b) Hidden entropy [bits] (theory)
log2(3) log2(3)

— by,

b, (1)

(d) (v, V)
0.035
0.03 0.02
0.025
0.015
0.02
>N >N
0.015 0.01

0.01
0.005
0.005

Figure 3.3: (a) Empirical evaluation, and (b) theoretical model of hidden entropy H(h) as
a function of hidden biases b? and b} for a model with parameters listed in (3.5). Empirical
evaluation consists in computation of the hidden entropy using its definition in (3.1) at
every point of the hidden bias space. Theoretical model is based on plotting one-bit hidden
entropy regions using derived inequalities in (3.20) and intersections of these regions. (c)
and (d) Probability of visible units p(v) for a model with parameters listed in (3.5) and
different hidden biases set to the origins b; and bf of the arrows, shown between the plots.
b; has hidden entropy of 1 bit and hence activates 2! Gaussian components in (c). bs has

hidden entropy of log, (3) bits and activates 2'°%2 (®) Gaussian components in (d).

3.4 One-Bit Hidden Entropy Regions

In this section, a methodology to model high hidden entropy regions in the space of hidden

bias is presented. It is based on deducing one-bit hidden entropy regions from assumption
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that two configurations of the hidden vector are equiprobable. The hint can be found in
Figure 3.3(a) and Figure 3.4(c). Yellow lines in Figure 3.3(a), which correspond to hidden
entropy value of 1 bit, activate two configurations of the hidden units. Hence, they separate
dark blue regions where only a single configuration of hidden vector is active. For a model
with any number of hidden units, this should be true as well. In this case, we are interested
in expressing one-bit hidden entropy region of the hidden bias in terms of the other model

parameters. Let us reindex elements of hidden vector and hidden bias:

hen hp by (1:5-1) by p
h= hj =1 hj |, br= b;? = b;.t . (3.12)
hiiiim hy by (j+1:1) by N

A reasonable assumption is that
p(hj,hp,hy) = p(—hj,hp hy) ~ 0.5 (3.13)

and hence there are two active configurations which yield 1 bit of the hidden entropy. The
question is, for which value of b;-‘ is this true? What are the constraints on by p and by
imposed by this equation? It should be noted that the assumption above is not the only
one possible, because any pair of antipode configurations of hidden vector with some fixed

hidden units can be equiprobable, such as

p(hj, hp,hy) = p(=hj,—hp,hy) ~ 0.5,
p(hj, hp, hy) = p(hj, —hp, hy) ~ 0.5, (3.14)
p(hj,hp,hy) = p(hj,hp, —hy) ~ 0.5,

and so on for any number of fixed hidden units beginning from 1 till (H — 1). In the next
two subsections, general solutions to one-bit hidden entropy regions with 1 antipode unit

shown in (3.13) and for regions with (H — 1) antipode units,
p(hj,hp, hy) =p(h;,—hp,—hy) = 0.5, (3.15)

are given. Explicit solutions for special cases of the models with two (H = 2) and three

hidden units (H = 3) are provided.
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3.4.1 One-Bit Hidden Entropy Region With a Single Antipode Hidden Unit

The assumption here is that two configurations of the hidden vector, [h; = +1,hp, hy] and
[hj = —1,hp,hy], are equiprobable, in which hp and hy are kept constant and h;’s two
antipode values differentiate configurations. Solving (3.13) involves equating energy terms

given in (3.2) for both configurations of the hidden vector. The solution for b? is given as

hp

h _ T -1

bj = —Wi X b,+W | 0 ) (3.16)
hy

and its detailed derivation can be found in A.4. Plugging the obtained value of b;? into (3.13)

yields

p(h; = +1,hp,hy) = p(hj = —1,hp, hy)
1

S S 3.17
2+F(hp,hN) ( )
where F(hp,hy) is defined as
T

\hp,hy gr — hP

F(hp,hy) = Z exp 0 X (3.18)
Vgp.gN 9i=
gy —hy

x (bp+ WIS (b, + ;W ;))) +

T T
gp gp hp hp
1
+5 110 WIs='wW| g |=| 0 |[WIEZ"'W| ¢
gN gN hy hy

For hidden entropy to be one bit, F'(hp, hy) should be a very small number close to zero.
Empirical evaluations shows that this constraint can be mitigated by setting upper bound

for F(hp,hy) as 1:
F(hp,hN) < 1. (319)

This upper bound corresponds to log,(3) bits of hidden entropy value.

Consider a simple model with two hidden units (H = 2), which are indexed as [hp, hj, hy]?

[hj, ha]T. The solution to (3.13) and inequality (3.19) induced by the same equation is given
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as
h T
bj = W B (by +haWi ),
p St T
b, %_1 —W( a)Z (bv +h W( )) , where
T -1
By = —sgn (haW{ ,B7'W ). (3.20)

When hidden biases b;-l and bZ are set to the values listed above, hidden entropy is
approximately equal to 1 bit. In Figure 3.3(b), regions with one-bit hidden entropy plotted
using (3.20) are shown as yellow lines. Points where these lines intersect have hidden entropy
equal to logy(3) bits. If we compare this theoretical model of hidden entropy as a function
of hidden bias with the empirical evaluation of the same function in Figure 3.3(a), we can
see a perfect match between the modeled function and its empirical evaluation.

Similarly, hidden vector in a model with three hidden units (H = 3) can be indexed

s [hp,hj, hy])T = [he, hj, hp)T. For three hidden units the solution is more complex due
to combinatorial nature of the problem. In summary, conditions needed to attain hidden

entropy of 1 bit are listed below:

h 1
b = W( 0 (b + haW(.a) + Wi p))

p et T 1
ah%l—W S (by + AW () + W)
where h? = —sgn (R W{ , 57'W(;)). (3.21)

bz -W{(,=!
hy=—1

where h? = —sgn (hbw{,b)z—lw(m) ’

(
-

+hEW () + ha W, a))

habg+hybly >~ (hbW(:,w+haW<:,a>)TE*l(bvﬂLh?bW(:J))a
where h?-b = —sgn (W(T:J)E_l (haW(;,a) + hbW(:7b))) .

In order to check the above hypothesis, hidden entropy analysis given in Figure 3.4(c) was

remade by setting the second hidden bias bg to a fixed value

by = —W{ 7" (by + MW 1) + hsW(.3)) = —48,

where h; = hg = +1, (3.22)
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which is the first condition listed in (3.21) necessary to attain hidden entropy of one bit. In
Figure 3.4(a) empirical evaluation of hidden entropy as a function of the remaining hidden
biases, b}f and bél, is shown. Other conditions necessary to obtain hidden entropy of one bit
are actually restrictions on b and b%. They are visualized in Figure 3.4(b). If we compare
this to the empirical evaluation of the same function in Figure 3.4(a), we can see a perfect

match between the modeled function and its empirical evaluation.

3.4.2  One-Bit Hidden Entropy Region With (H — 1) Antipode Hidden Units

Another region in the space of hidden bias with one-bit hidden entropy can be derived from
the assumption that two configurations of the hidden vector with (H — 1) antipode hidden

units are equiprobable:

p(hj,hp, hy) = p(hj,—hp,—hy)
1

— ~ 0.5. 3.23
2+ F(h;, hp, hy) (3.23)

Solving (3.23) by equating energy terms given in (3.2) for both configurations of the hidden

vector yields a constraint for by, p and by y as

hp
(bE + (b, + h;W(;)T=7'W) | 0 | =0. (3.24)
hy

For a model with three hidden units (H = 3), hidden vector h can be indexed as [hp, hj, hy]T =
[ha, hj, hp)Tand F(hj, hp, hy) becomes F(hj, hq, hp), in which residual (27 — 2) exponential
terms are summed up as

\(hjvhavhb)7(hj7_ha7_hb)

F(hj, hay hy) = > exp(B(g;, ga: b)), (3.25)
V(95:9asgb)

where B(g;, ga, gp) is defined as:

9ahw

a

B(gjs 9a: o) = <9b - > (b{j + bgz_lw(:,b)) +

+ (95 — BV + (9ags — hahe) W{ ) 7" W )+

+ W?J)E_l(g] - h]) (bv + gaW(:,a)) +

hj.gahb
ha

+ W(T:’j)E_l <gjgb — > W(:,b)~ (3.26)
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For the hidden entropy to be one bit, F'(h;, hq, hy) should be a very small number close to
zero. Similarly to the derivation of the single antipode hidden unit case, this constraint can

be mitigated by setting upper bound for F(h;, hq, hy) as 1:
F(hj, R, hb> < 1. (3.27)

This upper bound corresponds to log,(3) bits of hidden entropy value.

In summary, conditions needed to attain one-bit hidden entropy are listed below:

by > =W S (by + Bhs Wi o) + W ), (3.28)
h T -1
bb < 7W(:,b)2 (bv — hthW(:’a) + th(:,j)> ,

where hs = sgn(W(Tzva)E_IW(:vb)),

h T 1+ h
b = _ibg — (b + h;W(. ;) = 1<h:W(:7b)+W(;,a)) ,
p T T 1 b
- a
bz WD (bv — hh® (he W, ) + hbW(;,b))) ,
=

where hgb = Sgn(Wz:’j)z_l(haW(:,a) + hbW(:,b)))’
hobf—hb <+ (B W5y~ oW 1y) T =71 (by—ha W a) ,

hobf bl >— (B W W) 7 (butha Wi g) -

In Figure 3.4(d), one of the one-bit hidden entropy regions with (H — 1) antipode hidden
units is plotted in magenta using (3.28) and marked with “p(h;, ha, hy) = p(hj, —ha, —hp)”
label.

3.5 Intersections of One-Bit Hidden Entropy Regions

Depending on the dimension of the hidden entropy space (H ), different types of one-bit hid-
den entropy regions intersect/connect with each other at their boundaries, forming log,(3),
2, log,(5)-bit and higher hidden entropy regions. These regions can be lines, planes or hyper-
planes and are of primary interest because they provide highest representational efficiency
of the model.

More detailed look at Figures 3.3(b) and 3.4(d) reveals that regions of hidden bias with
high hidden entropy are concentrated in a grid, formed by intersection of one-bit hidden

entropy regions with a single antipode hidden unit, i.e. having p(h) with the following
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property:
p(hj,hp,hy) = p(=h;,hp hy) ~ 0.5. (3.29)

The solution to these hyperplanes is given in (3.16). The vector [hp;hy] has (H —1) hidden
units, so there are 2(7=1) different combinations for hidden unit hj, which corresponds to
o(H-1) hyperplanes for each hidden bias dimension j. Hence, the number of intersections of
these hyperplanes is (2(H—1)H

However, not all of these intersections have high hidden entropy. For models with 2

2_1)2) have high hidden entropy. One of such

hidden units, only two points out of 4 (i.e. 2(
points was used with the model given in (3.5) to activate three Gaussian components in p(v)
shown in Figure 3.3(d). From Figure 3.3(a) it can be seen that by is an intersection of two

lines. Point bf was computed using boundary values from (3.21) adapted for a model with

V =2 and H = 2. Explicitly, bf was calculated as follows:

hS _ T sl s \_ _
b* = W= (b, + WHY ) = —6.2222, s_ |V (3.30)
b}QL,S — _W'(I:’2)271 <b’U + WH‘(S‘Q)) = —462222, -1 0

where {W, 3 b,} are taken from (3.5) and H® is configuration matrix which represents
vectors hp and hy in a packed form.

In a model with 3 hidden units, only six points out of 64 (i.e. 23(3~1)) have high hidden
entropy. To demonstrate this, all possible one-bit hidden entropy regions and their inter-
sections with non-zero hidden entropy are shown in Figure 3.4(d). These regions and their
boundary values were calculated using (3.21) and (3.28). If we compare them to the empiri-
cal evaluation of the same function in Figure 3.4(c), we can see a perfect match between the
modeled function and its empirical evaluation. Additionally, a sample point bg with high
hidden entropy was calculated for the model geometry {W, 3 b,} given in (2.8) using the

following equation:

hC _ —1 C _

e =Wl = (bv +WH(:,1)) — _52.4444, 0 41 +1

¢ = Wi, = (bv +WH§2)) = 160000, H = |_1 0 +1|. (331
h,C _ T - C _

by =~ W3t (b, + WHE ) = +13.3333, 1 -1 0

where configuration matrix H is of size 3 x 3 since the model has three hidden units.

From Figure 3.4(d), it can be noted that point bg has hidden entropy value of 2 bits. This
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corresponds to activation of four configurations of hidden units which, in turn, switch four
Gaussian components on in p(v) in Figure 2.1(b).

In Figure 3.4(d), all intersections of one-bit hidden entropy regions, which have high
hidden entropy values, lie on a diagonal plane which passes through the center b} and form
a hexagon-like structure. Observing such a complex and interesting shape even in three
dimensions makes it harder to predict, how many of the 2(/=DH hyperplane intersections
will have high entropy and what shape will they take in higher dimensions, but their number

tends to be small.

3.6 One-Bit Hidden Entropy Regions as Decision Boundaries for Hidden Units

Activations

As was shown in Figure 2.1 and (2.12), hidden bias acts like a parameter which specifies
the position of the hyperplane in the space of visible units. This hyperplane is a decision
boundary which separates antipode configurations of the hidden unit.

Geometrical interpretation of p(h; = +1|v) with hidden bias set to one-bit hidden en-
tropy region with a single antipode hidden unit is shown in Figure 3.5. In this case, condi-

tional probability p(h; = +1|v) with b? set to (3.16) is given as

p(hj = +1]v) = sigm (2 (szrlw(;,j) + b?)) (3.32)
hajo)
= sigm 2W€7j)2_1 (v—by) - W 0
hji1.m)
From Figure 3.5, it can be seen that decision boundary passes perpendicularly to the jth
weight right in the middle between active hidden configurations.
Similarly, for a model with three hidden units, decision boundaries for p(h; = +1|v) and
p(hs = +1|v) can be plotted by setting hidden bias to one-bit hidden entropy region with

two, i.e. (H — 1) antipode hidden units are given as

b}f = —W(:71)2_1(bv + hZW(:,Q))v

by = =W 5T (by + haW.2)). (3.33)

Note that these two values are not a unique solution to (3.24). Plugging these values into
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(2.12) yields:

p(h1:—|—1|v):sigm(QWE‘F:J)E_I(V— (bv+h2W<;,2))),

p(hs=+1]v)=sigm (2W{ 5 =7} (v (by+hs W) ). (3.34)

From Figure 3.6, it can be seen that decision boundaries pass perpendicularly to the first
and third weights right in the middle between active hidden configurations.

Such geometrical interpretation is crucial for understanding principle of operation of
GBPRBM models and gives an insight into the data modeling from the clustering perspec-

tive.
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(a) Hidden entropy [bits] (experiment) ) Hidden entropy blt@] thcory

0 1 log,(3) 2 log,(3)
(c) Hidden entropy at 0.85 bits (experiment) (d) Hidden entropy [bits] (theory)
:I 1 bit p(hj, ha, he) = p(hj, —ha, —hs)

— |092 (3) bits

=il 2 bits

Figure 3.4: (a) Empirical evaluation, and (b) theoretical model of hidden entropy #H(h) as a
function of hidden biases b and b% for a model with parameters listed in (2.8) with second
bias b} is set to -48. (c) Empirical evaluation, and (d) theoretical model of hidden entropy
H(h) as a function of all hidden biases b?,b% b2 In (a) and (c), the hidden entropy was
calculated using its definition in (3.1) at every point of the hidden bias space spanned by
b b in (a) and bf,bB, b8 in (c). Theoretical model is based on plotting one-bit hidden
entropy regions, p(hj, hq, hy) = p(—hj, ha, hp) (yellow) and p(hj, ke, hy) = p(hj, —ha, —hs)
(magenta), using derived inequalities in (3.21) and (3.28), respectively. Intersections of such
regions produce hidden entropy equal to log,(3) and 2 bits. One such point b is shown in
(d). It was calculated using (3.31). Plots (a)

and (d) by setting b} = —48.

and (b) correspond to a slice taken from (c)
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Figure 3.5: Decision boundaries for p(h;|v) with b? set to one-bit hidden entropy region

with a single antipode hidden unit, i.e. b? satisfies equality p(hj, ha, he) = p(—hj, ha, hp),

where indices j = 2,a =1 and b = 3.
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Chapter 4

EMPIRICAL ANALYSIS OF REPRESENTATIONAL EFFICIENCY

In Section 3, we presented challenges of analysis of the hidden entropy as a function
of hidden bias. Computing hidden entropy defined in (3.1) implies calculating p(h) and
expectations over all 27 elements in the range of the random vector h. This is not feasible

for models with large number of hidden units.

4.1 Normalized Empirical Hidden Entropy

As a workaround, we propose a new measure of usefulness of hidden units which can be
estimated from the statistics of their activations. It relies on an assumption that hidden
units are independent. If a hidden unit is always “on” for all data samples, it means that it
shifts b, by +W(. j) in all samples. So why not just replace b, with [b, +W. ;)] and get rid
of this useless hidden unit? It will not affect other hidden units, because their activations
are based on conditional pdf p(h|v), in which individual hidden units are independent as
shown in (??). Hence, to compute the individual hidden unit activations, we first sample
hidden vector h from p(h|v) for each visible vector v in the data set S. Then we obtain
matrix A with hidden vector activations by concatenating all vectors h®,s € {1,...,|5]}

side by side where |S| is the number of samples in the data set:

~

A=[h' ... 00 (4.1)

Provided that, an estimate of the probability of hidden unit’s value h; is calculated as a
frequency of occurrence of h; in the jth row of matrix A:

S|

~ 1
p(hj = +1) = 18] ZIIK(]',S)H;
phj=—-1)=1-phj =+1) for je{l,...,H}, (4.2)

where Ifc,nq) is an indicator function which returns “1” if condition is satisfied and “0”

otherwise. Given pmf estimates of H individual hidden units, a measure of hidden units’
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activations can be devised based on entropy. Consequently, we define Normalized Empirical

Hidden Entropy (NEHE) as an average of estimated hidden unit entropies,

H
;IZ_: = ——Z Z ;) 1ogs p( ﬁ) (4.3)

J=1h,e+1

m>

NEHE can take a maximum value of 1 bit, which will indicate uniform distribution of all
hidden units. It should also be noted that NEHE and hidden entropy are two different
measures, which share the idea of measuring usefulness of hidden units. If the hidden units

are independent, then NEHE approximates the true hidden entropy,
H(h)=H-H if ph)=]]ph). (4.4)

On the other hand, if hidden units are correlated, the NEHE can be taken as an upper bound
for the true hidden entropy. We further discuss independence assumption and correlatedness

of hidden units in the next section.

4.2 Experiments with Normalized Empirical Hidden Entropy

In order to analyze how number of hidden units affects representational efficiency, we con-
ducted experiments using the MNIST, CIFAR-10 and Faces data sets. We trained GBPRBM
models with different numbers of hidden units and observed how Root-Mean Square Error
(RMSE) and normalized empirical hidden entropy (NEHE) change in each case.
Particularly, we used vanilla Contrastive Divergence (CD) algorithm described in [17]
to train GBPRBM models, in which model parameters are estimated by maximizing log-

likelihood function

L(6|v) =Inp(v;0). (4.5)

Given a training data set S with realizations of visible vector v, the optimal estimates of

model parameters 8 = {W,b,, by} are found as
0" = argmax 5] - Z£(9|VS), (4.6)

where |S] is the number of samples in data set S. It is not feasible to find global optimum

for (4.6) directly, instead a modified gradient ascent algorithm is used for this purpose. An
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update rule for every parameter 6 of the parameter set @ = {W,b,, by, } is given as
g+ — g 1 A9 (4.7)

where index t represents iteration number, and the gradient is computed according the

following equation:

AY = (1 | S‘Z 25 £(01vs) + puAEY), (4.8)
o9(t)

In addition to the derivative term £'(A|vs), the gradient A contains value AG*~1) from the
previous iteration, scaled by momentum factor p € (0,1) which prevents possible oscillation
and stabilizes convergence.

We used the MNIST data set, which contains 60000 gray-scale images of size 28 x 28
pixels, stored in unsigned 8-bit integer format. All images in the data set were scaled into the
range of [0,1]. A predefined setup was used, in which the data are splitted into a training
and a test sets with 50000 and 10000 images respectively. Afterwards, the conventional
contrastive divergence algorithm was run with the following parameters: fixed variances of
the visible units 02 = 6.7 - 1073, CD order k = 1, learning rate v = 10~° and momentum
p = 0.5. Model weights and hidden biases are initialized randomly with the maximum
magnitude of 0.01. The visible bias is set to the mean of the data, which makes it a good
guess considering symmetrical geometry of the GBPRBM model. In the beginning of the first
epoch the whole data set is partitioned into |S|/|Sp,| disjoint mini-batches of size |Sy,| = 20,
and the learning algorithm starts. At every iteration, an average of the gradient is taken
over a mini-batch and the update rule is applied according to (4.7). After every epoch,
the samples in the data set are shuffled and repartitioned into mini-batches of the same
size and learning continues. In total three epochs were used, which is quite enough for the
convergence of the training algorithm. An example model with 1500 hidden units has a
per-pixel Root-Mean Square Error (RMSE) performance of 0.0832 on the test data set. In
Figure 4.1, original and reconstructed test images are shown. Images were reconstructed by
sampling hidden units and using them to sample visible units (Gibbs sampling).

We also conducted experiments on the CIFAR-10 data set, which consists of 60000 color
images of size 32 x 32 pixels pertaining to 10 classes (airplane, automobile, ship, truck, bird,

cat, deer, dog, frog, and horse). The images were converted into a gray scale and the same
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procedure of data normalization and splitting was done as in the MNIST case. Similarly,
GBPRBM models with different numbers of hidden units were trained. The mini-batch size
|S,n| was set to 50 and the learning rate was decreased to 5- 1075, Number of epochs was
augmented to 5. An example model with 1024 hidden units has a per-pixel Root-Mean
Square Error (RMSE) performance of 0.1053 on the test data set. In Figure 4.3, original
and reconstructed test images are shown. CIFAR-10 is a very complex data with huge
variability in every pixel. For this reason, reconstructed images have worse quality than
those in MNIST. In Figure 4.4, some of the learned weights (reshaped columns of W) are
shown. There is no particular structure in the filters learned.

The third data set used for the experiment is the human faces data set'. It contains
3993 gray-scale images of faces belonging to different people of diverse ethnicities and both
genders. Original images of size 128 x 128 pixels were downsampled to a size of 52 x 52
pixels and normalized to a [0, 1] range. Similarly, GBPRBM models with different numbers
of hidden units were trained. The mini-batch size |S,,| was set to 100 and the constant
variances of the visible units were set to 9.1188 - 107*. The learning rate for models with
tens and hudereds hidden units was set to 2 - 1079 and decreased to a value of 5- 1077 for
models with thousands of hidden units. A slower convergence was compensated by increasing
number of epochs to 20. Prior information about the data was used to wisely initialize weight
matrix W. Since the face is almost always centered and the background is black, corners
of the image do not carry any useful information. Weight matrix W was initialized as an
average face scaled by a random number in the range [~5-107%, +5-107%]. An example model
with 4056 hidden units has a per-pixel Root-Mean Square Error (RMSE) performance of
0.0595 on the test data set. In Figure 4.5, original and reconstructed test images are shown.
Faces data set is a structured data set with less variability in every pixel. For this reason,
reconstructed images have better quality than those in MNIST. In Figure 4.6, some of the
learned weights are shown. It looks like every hidden unit encodes a distinct human face,
because the number of hidden units is close to the number of samples in the data set.

Since we investigate the effect of increasing the number of hidden units on the model

performance and representational efficiency, we trained several models with H ranging from

!The data set was downloaded from:
http://courses.media.mit.edu/2002fall /mas622j/proj/faces/rawdata.zip


http://courses.media.mit.edu/2002fall/mas622j/proj/faces/rawdata.zip
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order of tens to thousands. Per-pixel RMSE and NEHE were measured for the trained
models using the test data set. In Figure 4.7, these quantities are plotted as a function
of the ratio of hidden units to visible units (H/V). NEHE tends to attain its maximum
value of [0.88,0.96] when H/V is in the range of [0.25,1]. After this point, NEHE starts
to decline. This may indicate redundant complexity of the model. Meanwhile, normalized
RMSE decreases as H/V increases and after some point it reaches its constant value.

From Section 3.2, we know that in order to attain maximum hidden entropy, before diving
into the orthogonality condition of the weights, the first most important requirement V' > H
should be satisfied. As a consequence, H/V =1 is the point after which increasing number
of hidden units will only decrease hidden entropy. Note that NEHE is an approximation of
the hidden entropy only if hidden activations are independent, otherwise it defines an upper
bound for the hidden entropy. In Figure 4.7, we observe that NEHE, indeed, decreases as
H/V exceeds value of 1. On the other hand, augmenting the number of hidden units does
not help and RMSE slowly decreases, attaining its constant value after H = V.

For a small number of hidden units, the model will try to make use of as many hidden
vector configurations as possible. Not every hidden unit can be activated because norm
(length) of the vector W ;y is large. In the domain of images, this phenomenon corresponds
to thick large strokes, whose superimposition reconstructs original image. In Figure 4.2(a),
weights W ,ys learned by a model with 512 hidden units are shown. The model was trained
with the MNIST data set and accordingly, the filters learned resemble thick strokes and
half-digits. Since shapes of the digits are different, not all hidden units will be superimposed
to reconstruct original image. This may explain the under-utilization of hidden units and
a higher RMSE when H/V < [0.25,1]. After increasing the number of hidden units there
will be an “optimal” point H/V < [0.25,1], where NEHE attains its maximal value. In
Figure 4.2(b), filters learned at this point are shown. They no longer bear resemblance to
strokes, rather they have more cloud-like structure. Surprisingly, combination of these filters
yield shapes of digits with quite sharp edges. Further augmentation of the number of hidden
units results in generation of excessive filters with noise, as shown in Figure 4.2(c). These
noisy filters are not used in the image reconstruction and decrease the value of NEHE.

Independence assumption of hidden units in NEHE is a very strong assumption. Some

of the redundant hidden units may be correlated with other hidden units. They have to be



Chapter 4: Empirical Analysis of Representational Efficiency 34

somehow incorporated into the model. This results in smaller lengths (norms) of vectors
W(:,j)s. In case of 100% correlation, the values of hidden units will be the same, i.e.
h; = hy, such that the distance “travelled” in the space of visible units is h;W(:, j) + hi W (:
k) = hi[W(:,7)+W(:, k)]. Moreover, two completely correlated vectors W (:, j) and W (:, k)
should point in the same direction, because running Gibbs sampling using p(h;|v) and
p(hg|v) will not generate the same value of hidden units otherwise. Intuitively, it would be
logical to remove superfluous hidden unit hy and replace W (:, j) with [W(:, j) + W(:, k)],
if both models perform the same. Thus, complexity of the model can be decreased. Two
correlated hidden units will have the same contribution to NEHE, but it is hard to predict
the ratio of the correlated hidden units as the number of hidden units gets augmented.
Perhaps, correlation of hidden units should also be incorporated into a NEHE-like measure,
as well as the norms of the weights W(:, j)s, since geometry of the model also has a huge
effect on usefulness of the hidden units. It is a subject for future work and more profound
analysis.

In summary, the ratio of the number of hidden units to the number of visible units H/V
may need be in the range of [0.25, 1] or greater to efficiently represent the data. Increasing
this ratio induces sparsity in hidden units and NEHE starts to decline while RMSE decreases
very slowly and reaches its constant value. It is a sign that augmenting the number of hidden
units does not enhance the model’s performance. This behavior depends on the nature of

the data and may differ from data set to data set.
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Figure 4.1: Original (left) and reconstructed (right) images from the MNIST data set.
Images were reconstructed by using a GBPRBM model with 1500 hidden units.

(a) H=100 (b) H=512 (c) H=1500

Figure 4.2: Some of the filters (reshaped columns of W) learned from the MNIST data set
for GBPRBM models with (a) 100, (b) 512 and (c) 1500 hidden units.
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Figure 4.3: Original (left) and reconstructed (right) images from the CIFAR-10 data set.

Images were reconstructed by using a GBPRBM model with 1024 hidden units.

Figure 4.4: Some of the filters (reshaped columns of W) learned from the CIFAR-10 data
set for the GBPRBM model with 1024 hidden units.
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Figure 4.5: Original (left) and reconstructed (right) images from the Faces data set. Images

were reconstructed by using a GBPRBM model with 4056 hidden units.
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Figure 4.6: Some of the filters (reshaped columns of W) learned from the Faces data set for

the GBPRBM model with 4056 hidden units.
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Figure 4.7: (a) Per-pixel root-mean square error and (b) normalized empirical hidden entropy
as a function of H/V ratio for different GBPRBM models trained using the MNIST, CIFAR-

10, and Faces data sets.
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Chapter 5

CONCLUSION AND FUTURE WORK

We introduced a GBPRBM model as an alternative to the widely used GBLRBM model
and visualized its similarity to a Gaussian mixture model. Also, we proposed to use hidden
entropy as a measure of the representational efficiency of the GBPRBM. Within this scope,
numerical evaluations show that the hidden bias term plays crucial role in representational
efficiency of the model. Hence we presented a methodology for analysis of hidden entropy
as a function of hidden bias. In this analysis, point b} in the hidden bias space which
activates most distant components in p(v), was deduced. Besides, conditions necessary to
attain maximum hidden entropy were also stated. These conditions put constraints on the
geometry of the model, requiring weight matrix W to have orthogonal columns when X
is a scalar matrix. In the space of visible units, this corresponds to the weights’ span of a
hypercube with 277 active centroids, where H is the number of hidden units. Obviously, such
geometry is not suitable for data clustering in real life. Modeling data requires updating
the geometry {W,b,} to match centroid locations. This causes decreasing of the number
of active centroids for the the same H.

Findings given above provide an insight on the number of hidden units needed to be
chosen. If the number of clusters C'y in the data is roughly known a priori, then H should
be greater than log,(Cy). Incrementing H just by one doubles the number of the centroids
covered by Wh for all hidden vectors. This exponential property shows the representational
power of the model.

Our observations show that hidden bias controls the expression of Gaussian components
in p(v). Sparsity of the hidden entropy vs. hidden bias space indicates that only a few regions
possess high hidden entropy values. Improperly set hidden bias yields p(v) with a single
active Gaussian component making modeling useless. Also we demonstrated how different
values of the hidden bias suppress or activate different Gaussian components in p(v). Taking

this phenomenon into account, we derived high entropy regions with 1, logy(3), 2 bits for
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models with 1, 2 and 3 hidden units analytically.

Furthermore, we introduced Normalized Empirical Hidden Entropy (NEHE) as an alter-
native to hidden entropy to measure usefulness of hidden units. It also serves as an upper
bound for the hidden entropy. Experiments with MNIST, CIFAR-10 and Faces data sets
indicate that based on the value of NEHE, the ratio of the number of hidden units to the
number of visible units H/V may need to be in the range of [0.25, 1] or greater to efficiently
represent the data. At this point, adding extra hidden units does not improve performance
of the model and redundant hidden units are barely active. Although this behavior depends
on the nature of the data, this may be a good guess to estimate minimum number of hidden
units required.

Moreover, the experiments also show that the visible bias should be set to the mean
of the data and weights should be initialized with small magnitudes at the beginning of
the contrastive divergence training. This will stabilize and accelerate convergence of the
algorithm.

As a future study, it would be interesting to analyze hidden entropy for models with large
number of hidden units. The motivation behind the use of hidden bias with high hidden
entropy regions is to eliminate redundant hidden units whilst preserving similar geometry. In
addition, a few interesting questions arise. How does pruning hidden units affect performance
of the model? In the same fashion, the inverse problem is whether it is possible to add hidden
units during training and speed up convergence. What should be the minimum number of
the hidden units to be added? We partially answered this question based on the NEHE
measure, however, it would be interesting to use original hidden entropy measure for this
anlaysis. Inevitably, dealing with models with large number of hidden units is challenging,
since computations related to the hidden entropy require a large number of mathematical
operations due to the combinatorial nature of the problem. Another important task is to
check whether supervised initialization of hidden biases is feasible for large models and if
so, does it speed up the conventional CD, PCD and PT algorithms [17, 18, 19]. Provided
analysis also shows that the hidden bias space has very few high hidden entropy regions. In
order to overcome this inefficiency, the energy function used to define the joint probability

of the visible and hidden units can be modified.
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Appendix A

A.1 Probability of Visible Vector Given Hidden Vector

Conditional probability of observing v given h is given as:

_ p(v,h)
_ exp(—B(v,h)
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where parameters are given by

1 H
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A.2 Probability of Hidden Vector Given Visible Vector

Similarly, by using definition of the energy function, conditional probability p(h|v) can be

derived:

p(v.h) _ exp(~E(v.h)
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A.3 Probability of Hidden Vector

Probability of hidden vector is defined as:
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(b9)% + 20¢ Z hjwij +

j=1

H
260> " hjwi; +
j=1

TS~ 'Wh + b}fh)

exp (b 'Wh + 1h"W7S~'Wh + blh)

/V exp(—E(v, h))dv

H
E hjwij
j=1

2

H
E hj’wij
Jj=1

(A.12)

(A.13)

D g XD (bI2-1Wg + g

TWTS-1Wg + b!

g)

(A.14)

- (b))
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A.4 One-Bit Hidden Entropy Region With a Single Antipode Hidden Unit

Let us reindex model parameters and the vector h to separate hidden unit h; from the rest

of the hidden units:

W= :W(:J:H) Wi W(:,j+1:H)} = [WP Wi Wy| and
_h(1;j_1) hp by, (1:j-1) by p
h=1| hn; |=|hj|,br= bl = o (A.15)
b1 hy by, (j+1:m) by, N
Now recall the energy term A(h) defined in p(h):
A(h) = A(hj,hp,hy) = bIS""Wh + %hTWTE‘1Wh +bih. (A.16)

It is logically to assume that A(—1,hp,hy) is equal to A(+1,hp,hy) since both config-
urations [hp, —1,hy] and [hp,+1, hy] are equiprobable and all other configurations have

probability close to zero. Then the first term of A(h) is equal to:
b/ 'Wh =b/S"'Wphp + h;jb]Z'W_ ;) + b= 'Wyhy. (A.17)
Similarly, the second term of A(h) can be expressed as:
h'W'S™'Wh = 21, W[ i35 (Wphp + Wyhy) + (h;)* W[ )7 TW( )+
+hEWES""Wphp + hKiWEEZ "W yhy + 2hEWES"IWyhy. (A.18)
Note that (h;)? is always equal to 1. Analogously, the third term of A(h) is equal to:
bjh = b} php + hb) + bj yhy. (A.19)
To summarize, the energy term has a form of:

A(hj,bp,by) =y (BIET'W i) + W 57 (Wehp + Wyhy) + 1)
+ C(hp,hy)

h; +WT *1(bU+WPhP+WNhN)) + C(hp,hy)

(&
= by (bh+B hp,hN)) + C(hp, hy) (A.20)
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where B(hp,hy) and C(hp,hy) are terms independent of h;:
B(hp,hy) = W[ 57! (b, + Wphp + Wyhy)
and
C(hp,hy) = b S (Wphp + Wyhy) + b} php + b yhy+
+ % (WE,) ='W + hEWEE ' Wphp+
+hAWLE"'"Wyhy + 2hiWEE"'W yhy)

hp
1
Ty —1 T T -1
= (b, X" 'W+by) | 0 + WD W+

hy
T
hp hp
1
+5 |0 wWis='w | o
hy hy

The value of b? which satisfies the following condition
A(=1,hp,hy) = A(+1,hp, hy)
can be found by solving the equation:

* (b? + W{ 37 (by + Wphp + WNhN)) +C=

- (b;? + W3 (b, + Wphp + WNhN)) +C.

The solution is:
hij)
by = =W{ y=7 (b, + Wphp + Wyhy) = =W/ ;37 [ b, + W | 0
hji1.m)
Now let us find constraints for by, p and by, . Recall that p(h) is defined as:

exp(A(h))
p(h) = DL
)= 5 exp(AGg)
Plugging the obtained value of b? given in (A.28) into (A.29) yields:

p(hp,hj = +1,hy) = p(hp,h; = —1,hy)
exp (C(hp,hN))

\hp,hy

2exp (C(hp,hy)) + 35 30 exp(g; (b} + B(gp,gn))) exp(C(gr. gn))
Vegp.gn g9j=*1

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

. (A.28)

(A.29)

(A.30)
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Dividing both numerator and denominator by exp (C(hp,hy)) produces:

p(hp,hj =+1,hy) =php,hj = —1,hy)
1

\hp,hy

2+ > > exp(g;(b" + Blgp, gn))) exp(C(gp, gn) — C(hp, hy))
Vgp,gn g9j=%1

1

= - A.31
2+ F(hp, hy) (A.31)
where F'(hp,hy) is defined as:
\hp hy
F(hp,hy) = > D(gp,gn)exp(E(gr,gn)) (A.32)
VgP7g1\7
where D(gp,gn) and E(gp,gn) are defined as:
D(gp.gn) = Y exp(g;(t} + B(gp,&n)))
g;=+1
2 [exp(b) + B(gr,gn)) + exp(—(¥! + B(gr,gn)))
B 2
= 2cosh(b§Z + B(gp,gn))
gp hp
= 2cosh W%F:J)E_IW 0Of—10
8N hy
g(1:5-1) h(l:j—l)
= 2cosh W(Tzvj)E_IW 0 - 0 (A.33)
| 8(j+1:H) h(j+1:H)
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E(gp,gn) =C(gp,gn) — C(hp,hy) (A.34)
gpr hp gpr hp
=bl{lo]|-]o0 +bI'= "Wl lo|-|o]||+
gN hy gN hy
T T
gp gp hp hp
1
ol o] WETW o] -0 | WIET'W | o
gN gN hy hy
g(1:j-1) h.1)
= (b}, +b;Z7'W) o | -] o +
g(j+1:H) h(j+1:H)
2 2
. 8(1:5-1) h(lrj—l)
+ 5 »-1/2w 0 — =YW 0
8(j+1:H) h(j+1:H)

2 2
For hidden entropy to be one bit, F'(hp,hy) should be a very small number close to
zZero:

1

hj=+1hphy)=——

1
okt if (A.35)
F(hp,hy) is close to zero. (A.36)

Empirical evaluations shows that this constraint can be mitigated by setting upper bound

for F(hp,hy) as 1:
F(hp,hy) < 1. (A.37)

This upper bound corresponds to log,(3) bits of hidden entropy value.

A.4.1 Constraints on the Remaining Hidden Bias for Models With H = 2

Consider a simple model with two hidden units (H = 2), which are indexed as [hp, h;j, hy]? =

[hj, ha)T. The first condition given in (A.28) reduces to:

h T —1
bj — —W(:’j)z (bv + haW(:ﬂ)) . (A38)
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In this case F'(hp,hy) reduces to:

\ha
F(ha) = D(ga) exp(E(ga)), (A.39)
V9a
where
Di(ga) = 2cosh ((ga — ha) W] 27 W(. ) (A.40)
E(ga) = b(9a — ha) + (92 — ) W{ ) 7" W oy + (9o — ha)bg 7" W, o)
= (ga - ha) (bg + bfz_lw(:,a)) , since (gg - hg) = 0.
The summation limits of F'(h,) have only one summand term corresponding to g, = —hy:

F(hqa) = D(—hq) exp(E(—hq))

— 9cosh (—2haWZ7j)2‘1W(:7a)) exp <—2ha (bf; n bfz—lwm)))

= > exp (<2h bl + W37 (by + W) ) (A1)
gj==%1
For hidden entropy to be 1 bit (two active configurations (h;, h,) and (—hj, hgy)), F(hg)

should be smaller than 1. In summary, conditions needed to attain one-bit hidden entropy

are listed below:

b? - _Wg;j)z_l (bv + haW(:,a)) )
B T st
by 2 Wi S (by+h;We ), where
a=—1 ’
T -1
By = —sen (R W B7'W,)). (A.42)
It should be noted that upper (b, = —1) or lower (hq = +1) bound for b is actually a

first condition listed in (A.28) for one-bit hidden entropy region of ath hidden bias term. In

other words, setting
h T -1
ba = —W(:ya)E (bv + th(:J)) (A.43)
yields

F(hy) =1+ exp (+4hath{:,a)E_1W(;,j)) . (A.44)
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For F(hg) to be close to 1, the exponential term should be a very small number. This is

possible only if

hahjW{ ) Z "W ;) <0 (A.45)

(s,a

which gives a solution:

hy = —sgn (W S "W). (A.46)

(:,a
Intersection of one-bit hidden entropy regions in ath and jth hidden bias terms is a point

where hidden entropy of log,(3) bits is achieved:

h T —1
bj = =W ;37 (by +haW(. ),

h T - W
by = WD ' (by+ ;W ;).  where

hy = —sgn (ha W) S "W). (A.4T7)

Configurations (—hj, ha), (hj, ha) and (hj, —he) are active where h; is defined in (A.47).

A.4.2  Constraints on the Remaining Hidden Biases for Models With H = 3

Similarly, hidden vector in a model with three hidden units (H = 3) can be indexed as
[hp, hj,hy]T = [ha, hj, hy]T. For three hidden units the solution is more complex due to

combinatorial nature of the problem. The first condition on b? is given in (A.28):

h T -
bj = —W(:7j)2 1 (bv + haW(;,a) + hbw(;,b)) . (A48)
In this case
\hp,hy
F(hp,hy) = > D(gp,gn)exp(E(gp, 8N))
vVgp,gN
reduces to
\havhb
F(ha,my) = > D(gas 90) exp(E(9a, 9b)) (A.49)
v.g(hgb
where
D( =2 h(WT 21 (g — ha)W — hy)W A
Ja, gp) = 2cos o) ((9a — ha)W( oy + (95 — o) W) (A.50)

E(Qav gb) = bZ(ga - ha) + bl})L(gb - hb) + (gagb - hahb)W’(Z;a)Zilw(:,b)"i_

+bIS 7 ((ga — ha)Weay + (96 — he) W) (A.51)
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and

F(ha, hy) = Z 2 cosh (W%:,j)x_l ((9a — ha)W (o) + (95 — hb)W(:,b))> X

I

< exp (b + DS Wi ) (90— ha) + (B + DS W ) (90— o)) + (9000 — hal) W] Wy
(

|

= 2cosh (~2h, W BT W) ) exp (=2ha (W2 + W) E 70 (b + yW( ) ) ) +

+2cosh (=2 W) Wiy ) exp (=20 (1 + WS (b +haWeew)) ) +
b+ W, b,
—2W( 37 (ha W) + hbW(:,w)) oxp (2[ha ho) [ .

by + W, = 'b,

(
(

g9;=*1

oy (W + W=7 (by+ ;W) )) (A.52)

log,(3)-bit Hidden Entropy Regions
Now the goal is to find a value of b which makes hidden entropy equal to log,(3) bits. This
is possible only if F'(hg, hp) is close to 1. Setting
o = ~W( I (by + W) + W (. )) (A.53)
yields
Flhashy) = 1+ exp (+4hahy W, 57 IW( ) ) +
+ exp <—2hb <b? + W B (by + hy W) + haW(aa)))) -
+ exp (—2hb (b{; + W, (by — bW + haWc,a)))) +
+exp (+2ha W ) BT W ) -
2y (b + W37 (by + W) ))
+oxp (+2ha W 57 (20 W) + W) —

2y (b + W=7 (by — ;W ))) (A.54)
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Regrouping the terms results in:

F(ha,hy) = 1+ exp (+4hahjwaa)2—1w(:7j)) + (A.55)
+oxp (=2 (V) + WS (by + B W)+ ha W)
+ exp by + Wy 57" (by — BiW( ) + haW . )
b+ WS (by+ AWy = haW () ) ) +
by + W{ =" (b, — — haW(.a))

hohj o r .
—2 hbjw( o= W ])>)

+ exp th

(20 (
+ exp ( 2y (
(=2 (

For F(hg, hy) to be close to 1, all exponential terms should be very close to zero. This can

be achieved if
h; = —sgn (haWE‘F:,a)E_IW(:J)) , (A.56)
and bZL is set to the following values depending on hy:

b < min(By) if hy = —

b > max(By) if hy = +1, (A.57)
where
T —
Bn = { ~ W=7 (by + W j) + haW(.q)) ,

- W,(T b)zil (bv - h]W(,]) + haw(:,a)) ) (A58)

Wi (by + hiWi ) —haWia)

- hah;
—W{,Z 7" (by — bW ) — haW (. q)) +2 T

T —1
b VV(:,a)2 W(v])} :

Configurations (—hj, ha, hs), (hj, ha, hy) and (hj, —hq, hy) are active where h; is defined in
(A.56).
Similarly, for the second term in (A.52), the goal is to find a value of b which makes

hidden entropy equal to log,(3) bits. This is possible only if F'(hg, hy) is close to 1. Setting

by = =W 3! (by + W j) + haW(.q)) (A.59)
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yields
F(ha,hy) = exp (~2ha (b + W ) E7" (b + hy W) + i Wep) ) ) +
+exp (<2ha (V) + W7 (by = W) + W) ) ) +
+1+exp <+4hbh wi b)z‘lw(;,j)> +
+exp (~2ha (V2 + W37 (by + AW ) ) +
20,y W 5TIW )
+exp (~2ha (Vs + W=7 (by = W) ) +

T _
2 Wy B (20 W)+ haW ) (A.60)
Regrouping the terms results in:

F(hq,hp) =1+ exp (+4hbth€,b)z_1W(:7j)) -

+exp (—2ha (b + W=7 (by+ B W) + Wiy ) ) +
+exp (—zha (bh + W 37 (by — W) + W, )))) +
+ exp <—2ha (bh + W 27 (b, + hyW ) hbw(:,b)))) +
+ exp <—2ha (bh + W I (by — W) — W) —
h;;hj wr )2_1W(:7j)>> (A.61)

For F(hg, hy) to be close to 1, all exponential terms should be very close to zero. This can

be achieved if
hy = —sen (W, 57'W;)). (A.62)
and b)" is set to the following values depending on hyg:

o' < min(Ap) if he = —1,

b > max(Ay) if he =41, (A.63)



Appendixz A: 55

where
Ah:{ El(bv+hW +hbW(b R
0 Z (b - H+HmWey), (A.64)
— WT > L

hbh]

)
by, +hiW iy —hW.p))
)

T 1
~W{ 57 (by — hy W) — Wy,

T -1
W )2 W(:,j)}-

Configurations (—hj, ha, hs), (hj, hq, hy) and (hj, hq, —hy) are active where h; is defined in
(A.62).

Similarly, for the last term in (A.52), the goal is to find values of b and b} which make
hidden entropy equal to logs(3) bits. This is possible only if F'(hq, hp) is close to 1. Equating
the last term to zero

—2h, (W + W=7 (by+ 1 W )) -

= 2hy (b + W37 (by + B W) ) =0 (A.65)
is equivalent to:

hably + habf, + (W .y +ha W) B (by + 1 W ) =0

_ hb B
b+ Wi (by + W) = =32 (o5 + W=7 (bo+ b W)
h h
bZ = hb bh (bv + th(:,j))T »-! <hbW(:,b) + W(:ﬂ)) . (A_66)

This is actually the (A.73) for hp = h, and hy = hy. It describes a plane which separates
configurations (hy, ha, hy) and (hj, —hg, —hp). Plugging obtained b/ value into (A.52) yields:
h _
F(ha, hy) = exp (42, (b + W=7 (by + bWy — haWi)) ) +

+exp (+2hb (b{; + WEyS (by + W j) — haW( o) +

h h] T —1

+exp (_th (b{;juw(ﬁb)z-l (by + AW () + haW., >)>>+

exp (=2hy (B + WS (by = W)+ ha W) ) ) +

1+ exp (4 W E T (ha W) + meWep)) ) (A.67)
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For F(hg, hy) to be close to 1, all exponential terms should be very close to zero. This can

be achieved if
h; = —sgn (Waj)z_l (haW (. q) + hbW(:,b))> ; (A.68)
and bg is set to the following values depending on hy:
max(By) < b < min(BY) if hy = +1
max(B}) < by < min(By) if hy = -1, (A.69)
where

B, = { = Wi (oo + Wiy = haWia)

hoh;
T —1 a T —1
~W(iyZ 7 (by = Wi jy = haW( ) = 2 W 5 W(:J)} -

Ry, (:,a

is a set of values corresponding to the first two terms of (A.67) and

Bp = { W, b)z Y (by + W)+ haW( o),
~W{( B (by — W j) + haW(:,a))} :

is a set of values corresponding to the third and fourth term of (A.67). Configurations

(=hj, ha, he), (hj, ha, hy) and (hj, —hg, —hy) are active where h; is defined in (A.68).
log,(2)-bit Hidden Entropy Regions

For hidden entropy to be 1 bit (two active configurations (hj, he, hy) and (—hj, hq, hy)),

F(hg, hy) should be a very small number close to zero. However, the upper bound for

F(hg, hp) can be set to 1. In summary, conditions needed to attain one-bit hidden entropy

are listed below:

he=+1

h T a

b haf —W( Z7 (by + hiW () + W ()
where = —sgn (ha W, ')> ,
hb=+1

bz ,21( + W +hW(a)>
hy=—1

where h? = —sgn (hbW(T;,b)Eilw(ujD ’
habl + b > — (W) + ha W) =7 (bv + h?bwtvj))

where  hS" = —sgn (W=7 (haW.o) + o W(.p) ) - (A.70)
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A.5 One-Bit Hidden Entropy Region With (H — 1) Antipode Hidden Units

Another region in the space of hidden bias with one-bit hidden entropy can be derived from
the assumption that two configurations of the hidden vector with (H — 1) antipode hidden

units are equiprobable:

p(hj,hp,hy) = p(hj, —hp,—hy),

A(hj,hp, hy) = A(h;, —hp, —hy). (A.71)
Plugging definition of A(h;,hp,hy), given in (A.20), produces:

h (b? + B(hp, hN)> + C(hp, hy) =
h; (b;‘ + B(~hp, th)) + C(~hp, —hy),

th(hp7 hN) + C’(hp7 hN) = th(-hp, —hN) + C(—hp, —hN). (A72)
Regrouping yields necessary constraints on by, p and by, y is:

hP hp
Ty —1 T T -1
hy hy

bf php + bl vhy + (b, + h;W(. ;)" 71 (Wphp + Wyhy) = 0. (A.73)

For GBPRBM models with three hidden units (H = 3) and two equiprobable configurations
of the hidden vector

p(hj7ha7hb) :p(h’j7_h’a7_hb)7 (A74)
the necessary conditions and constraints simplify to:

hably + b, + (W) + haWio)' 57 (by + W, ) =0

3]

h
b+ W =7 (by + W) = _fTZ (b1 + W=7 (by + W)
by = —Zzb? = (bu+ bW ;)" =7 (

Iy

A W(:7b) + W(:’a)> (A.75)
a
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Now recall the energy term A(g) defined in p(g):
_ 1 _
A(g) = A(9), 90 ) = b, 3" ' We + 5g' WIS~ Weg + by g

= bTE_l (gaW( a) + ng( b) + g]W( )) + b i 95 + bbgb—

gahb
hg

gahb
hq,

T —~—
by — (by + hW.j)) 1( Wcz,b)+9aW<s,a)>+

1 _
+ 5 2ngg:,j)2 1 (gaW( )—I—ng a) Z W 2 W( k)-i-
k=a,b,j

+ 2ga9bW(T;,a)271W(:,b)

oh _ _
_ <gb - gh b) (b{: +blx 1W(:,,,)) + 0195+ Ga W B Wy

a

_ higeh
+W( ]) <gjbv+ (gjgb— 7]2 b> W, )+ga( i —h; )W( )>
a

+ > WS Wy, (A.76)
k=a,b,j
To normalize the numerator and the denominator in p(h) we need to subtract constant terms
and the term which activate configurations (hj,he, hy) and (hj, —he, —hy) of the hidden
vector h:
B(9;: 9ar 96) = A(95, Ga, 9b) — Z WT Wi (A.T7)
k=a,b,j

— hi(b} + bIZTIW () — ha iy W ) ST Wy

ol _
= (Qb - gh b) (b{f +b/Z 1W(:,b)) + (g — hy)bl+

a

+ (gags — halp) W ST "W+

_ h ‘gahb
+ W,z <(9j — hy) (by + 9aW(.a)) + <9jgb - ]ha> W(:,b))

Newly derived B(g;, ga, g») term is used in defining function F'(hj, hqe, hy) in the denominator
term of p(h):

p(h]7 h’a7 hb) - p(h]7 _haa _hb>
_ 1 o1
" 24 F(hj, ha, hy) 2

if (A.78)

F(hj, hq, hy) is close to zero. (A.79)
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where F'(hj, hq, hp) is given as:

\(hj7ha7hb)7(hj7_ha7_hb)

F(h]a ha7 hb) = Z eXp(B(gj7g(za gb))
V(gj:9gag)
= exp (~2hy (0] + b)El(bU+hW )+ W)

+2hy, (b + W[y =7 (b, — o+ Wi

+ exp > 1 b, + A +hbW( b)

(:9)

+exp (—2h; (B + W B! (by = ha W) — W )
bh

+2hy

(

~2h; (o} + W,
(%
(1

/\/\/\/‘\

+ exp -i-W( b)E (b, —

( >)

— 2 (0 + W=7 (b, - a)))
+exp (=2h (b + W37 (by + h W) ) -
(bo+ha W) (A.80)

—2n; (o + W)=~
First two terms in (A.80) bring a condition for h,:
ha = hy sgn(W{  S7TW () (A.81)

and a constraint for b’l}:

T -1 oL g, et T -1

Wi yZ7 (by = haWi o) + hi W ) \ 2 X b . 2 - W= (by +ha W o) + W 5),
b—— b——

(A.82)

which can be simplified to:

—W(T:’b)z_l (bv + hthW(:ﬂ) + th(:,j)) < bb < W( b)E‘l (bv — hthW(:ﬂ) + th(:J))
(A.83)

where supplementary hg term is defined as:
hs = sen(W{  S7TW (). (A.84)
The third and the fourth term in (A.80) bring a constraint for b?:

b <min(Jy) if hj = -

b > max(J,) if k= +1, (A.85)
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where 7}, is defined as:

= { ~WiHE (oo +haWio) + W)
Wi E T (bo —haWia) — hch,b))} : (A.86)

Rewriting it without min and max statements can be done by adding an extra variable h:

p St T -1 b
bz Wi (by = hihe (R Wiy + W)
=
where hgb - Sgn(Wr(I;j)E_l(haW(;’a) + hbW(:,b)))- (A.87)

The fifth and the sixth terms in (A.80) require that

hobf — hbl < 4 (W) — W) 71 (by — heW(. ) ,

hobft + bl > — (hyW .y + W) B8 (by + ha W) - (A.88)

A.6 Contrastive Divergence Learning

Contrastive divergence (CD) algorithm is based on maximum-likelihood estimation, in which

parameters of the RBM model are estimated by maximizing log-likelihood function
L(8|v) =Inp(v;0). (A.89)

Since a modified gradient ascent algorithm is used in CD, explicit form of the derivatives of
the model parameters should be given in the first place.

Let us define two auxiliary terms Y = 3°) exp(=E(v,h)) and Z = [ 37, exp(—E(u, g))du,
then

p(V; 9) _ Zh eXp(—E(V, h)) _ K (A90)

g exp(—E(u,g))du  Z

Differentiating the logarithm of p(v) with respect to parameter § € {W,b,, by} yields:

0 1 9p(v;0)
~ 1 - 0) —
g6 P(v:0) p(v:0) 90
1 (B2 4]
Y/Z 72
19y 10z
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Nominator term Y and denominator term Z are given as:

aaief - % >_exp(—B(v,h) = =) exp(~E(v, h>>aEf;;h)v (A.92)
h h
50~ ], 2 exp(=B(ug))du = - / Zgjexp(—E(u,g»wg;’g)du.

Substituting derivative terms produces:

2lnpv 0)

exp(—E(v,h)) O0E(v,h)
06 Z > g €xXp(— *

E(v,g)) 00

exp(—E(u, g)) 0E(u,g)
/ Zf > exp(—E(p.a))dp 06

-~ Sti) 2L b) /me,g)aEg‘;’g)du
vg

—= S [yt DR W) g,
h

OE(v,h) 8E(u,g)} ‘

= —Eym)y) [80] + Epu)Ep(glu) [ 90 (A.93)

The derivative of the log-likelihood function with respect to weight w;; is given as:

83” In p(v Zp (h|v) [ . } / Zp (glu) [ Ufgﬂ

(2

1
L S s TT S ) [ ot S e, TT 3 ploumyin
i hje+1 k=1h e+l u g;€+1 k=1gre£1
k#j k#j
1
=— (v 2 p(hj|V)hj_/p(u)Ui > plgjlu)g;du
g hje+l u g;€£1

1% 1%
1
= — | vi - tanh E U—;wlj + b;-‘ — / - tanh g %wl] + b .
0; =1 ] u =1 0]

(A.94)
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The derivative of the log-likelihood function with respect to visible bias term b} is given as:
0 b“
a0y Inp(v Zp h|v) Zp glu) |— du

~ (”i—bl’— /u p(u) [u; — b}] du>

S

o}

1 v v

= — |vi—b — | p(w)uda+b] [ p(u)du

ag; u u

S

o}

1

2

-2 <vi_ /u p(u)uidu>
- <vi— /u | p(ui)uidui>. (A.95)

The derivative of the log-likelihood function with respect to hidden bias term b;” is given as:

0
oy 170) = = St -l + [ ()3 el 51
u
5wttt TT Y st~ [ ot 3 it TT 3 plosui
hje+l k¢1hkei1 u gje+l k;élgke:tl
J J
= S plhv)hy — / pw) 3 plgjlu)gdu
hjexl u gjE€+£1

v v
= tanh <Z %wlj + b?) —/ - tanh (Z U—Q wy; + b} > (A.96)
l =1 %1

=1

Since p(v) is unknown calculating Ej, ) Ep(glu) [%g’g)} of the derivative term is infeasible.

To deal with this intractable expression, an approximation based on Gibbs sampling is used:

(0) (k)
CDp(v®, vy = — Zp(h‘v(o))aE(ge’m + Zp(h\v(k))aE(‘ég’h). (A.97)
h

CDy(v(®,v(*) is a k-order approximation of the % In p(v). Two values of the visible layer,
v(® | the input data, and v(*), the sample drawn using Gibbs sampling are used to approxi-
mate the derivative term given in (A.93).

In contrastive divergence algorithm the first sample h(® is drawn from p(h|v(®). Ob-
tained sample h(?) is used to generate visible vector v(!) by taking a sample from p(v|h(®).

This process continues for k steps yielding v(*) in the end:

v© = hO = v o p@) oo pED o (R (A.98)
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The complete algorithm of the training based on the contrastive is given in Algorithm 1.

Gibbs sampling approximation of the derivatives of the model parameters is given below:

Vo (0) V)
1
0) (k) - _ ! h
CDw(V(),V()JaJ) —JZZ [v tanh(é_ lej+b > tanh(i_l j+bj>
CDp (v, v ) = iQ (v§°> - v§k>) (A.99)
9

V(0 )
CDyn (V(O),v(k),j) = tanh (Z vl—lej + b;‘) — tanh (Z - wyj + b?) .
o
1=1
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Algorithm 1: Training GBPRBMs using k-step contrastive divergence.
Input : Number of visible units V; number of hidden units H; number of epochs N; a batch S of

visible vectors v, € S; number of mini-batches M; Gibbs sampling order k; learning rate
v; regularization constant A\; momentum pu.
Output: For alli € {1,...,V}, j€{1,..., H} GBPRBM weights w;;, biases blﬂb;-l.
begin
forie{l,...,V}and j€{l,...,H} do
Initialize weights w;;, biases by, b? and corresponding A-updates:
w;j ~ N(0,0.1), by = mean(S), b ~ 1(0,0.1) (for modified algorithm by, = b},),
| Awi; =0, Aby =0, Abl =0
for epoch n € {1,...,N} do
Permute samples in batch S.
Partition batch S into M disjoint mini-batches Sp,, ¢ € {1,..., M} such that
SpNSq=0,Vp,qge{l,...,.M}, p#£q,and St US2U---USy = 8.
for m € {1,...,M} /* For every mini-batch Sy, */ do

forie{l,...,V}and j€{1,...,H} do
Clear derivatives of the log-likelihood function:

| dwi; = 0; 6by = 0; 6 = 0.
for v € S,, /* For every sample in mini-batch Sy, */ do
v(© v /* Set sample as a visible vector */
for t € {0,...,k — 1} /* k-step Gibbs sampling */ do
for je€{l,...,H} do

L Sample hidden units: h;t) ~ p(h;|lv®).
forie{1,...,V} do

| Sample visible units: v" " ~ p(v;[h®).

i

forie{l,...,V}and j€{1,...,H} do
Contrastive divergence update:

dw;j < dw;; + CDy, (V(O),V(k),i,j)
6bY < 6bY + CDyo (v, v(*) 4)
| 0b] ¢ 60 + CDy (v, v )

forie{l,...,V}and j€{1,...,H} do
Normalize by mini-batch size:

§bY h
ST 0b; +

h
5b]v
[Sm|

Swij )

forie{l,...,V}and j€{1,...,H} do
Update all parameters:

Awij — (1 — /J,)V . (5’Ll)ij + quij
Wij < Wij + Awij
AbY « (1 — p)v - 5b7 + pAby
bY b + AbY
Abl (1 — p)v - 6bl) + pAb)
| bl b+ ADY
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