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ABSTRACT

In this thesis new distributed adaptive algorithms for the in-networking parameter es-
timation problem are proposed. They are cooperative and resistant to link failures. The
individual nodes run local least-mean squares (LMS) algorithm to estimate the common
parameter of interest and then share these estimates with nodes in vicinity. Neighbor nodes
use these data to update their own estimates by combining received estimates and processing
the resulting aggregate estimates in the local adaptive LMS filters. This strategy is known
as the diffusion LMS algorithm.

In the first chapter of the thesis stability and convergence of the diffusion LMS algo-
rithm is introduced. Theoretical statement of the evolution of the mean-square deviation
(MSD) and excess mean-square error (EMSE) are given in short as stated in literature. Sim-
ulations show perfect match between experimental and theoretical evolution of these error
measures for diffusion algorithm. Also experiments show that this algorithm has a faster
convergence and better performance (tens of dB difference in MSD and EMSE) compared
to noncooperative LMS.

The second chapter of the thesis contains main contributions of the research. In the
diffusion LMS algorithm, aggregation step comprises of combining neighbor estimates by
weighing them with constant coefficients. Contrary to this approach, in proposed adaptive
diffusion algorithms another adaptation layer is introduced to update these weighing co-
efficients at every iteration. The weights are constrained to produce a) convex, b) affine
combination or ¢) may not have any constraints. For adaptation purpose gradient-descent
algorithm is used. Simulations show that in some cases adaptive diffusion LMS algorithms
have faster convergence than classical diffusion algorithm with penalty in larger MSD and

EMSE values in the steady-state.
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OZETCE

Bu tezde, ag i¢indeki parametre kestirimi problemi i¢in yeni uyarlanir algoritmalar 6ner-
ilmektedir. Bu algoritmalar igbirlikseldirler ve diigiimlerin arasindaki baglant1 kopmalarina
kars1 dayanikhidir. Bireysel diigiimler ortak bir parametreyi kestirmek i¢in en kii¢iik ortalama
kare (LMS) algoritmasimi ¢aligtirmaktadirlar ve elde edilen kestirimlerini komsu diigiimlerle
paylagmaktadirlar. Komsu diigiimler alinan tahminleri birlestirerek, olusan toplam kestir-
imle kendi (yerel) kestirimlerini giincellemek i¢in ¢aligan uyarlamali LMS siizgeclerini besle-
mektedirler. Bu strateji, yayimim LMS algoritmasi olarak bilinir.

Tezin ilk boliimiinde yaymmim LMS algoritmasinin kararliligi ve yakinsamasi literatiirde
verildigi gibi incelenmektedir. Ayrica ortalama karesel sapma (MSD) ve fazlalik ortalama
karesel hata (EMSE)’nin zamanla geligiminin teorik analizi verilmigtir. Benzetimlerde, yayimim
algoritmasina ait MSD ve EMSE hatalarinin deneysel ve teorik geligimlerinin arasinda miikem-
mel bir uyumun saglandigini gdsterilmigtir. Ayrica deneyler, yayinim LMS algoritmasinin
igbirliksel olmayan LMS algoritmasina gore daha hizl bir yakinsamaya ve daha iyi bir per-
formansa (MSD ve EMSE degerlerinde on dB’lik fark mertebesinde) sahip oldugunu goster-
mektedir.

Tezin ikinci boliimii, yliriitiilen aragtirmanin ana katkilarini icermektedir. Yayimim LMS
algoritmasi komsu kestirimleri birlegtirirken onlar: sabit katsayilarla ¢arparak elde edilen kes-
tirimleri toplamaktadir. Bu yaklagimin aksine, onerilen uyarlamali yaymim algoritmalarda
her yinelemede bu katsayilar: giincellemek i¢in bagka bir uyarlama katmani kullanilmaktadir.
Bu agirhik katsayilar a) tiimsek, b) 1lgin kombinasyonu olugturabilir, ya da c) katsayilar i¢in
herhangi bir kisitlama olmayabilir. Tkincil uyarlama katmaninda katsayilar: giincellemek icin
en dik inig (steepest-descent) algoritmasi kullamlmaktadir. Deneysel sonuglar, baz1 durum-
larda uyarlamali yayinim LMS algoritmalarinin geleneksel yayimim algoritmasindan daha iyi
bir performans sergiledigini ve ¢ogu zaman hizli yakinsamayi elde etmek i¢in kararli durumda

daha biiyiik bir MSD ve EMSE degerleriyle telafi etmenin gerektigini gostermektedir.
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NOMENCLATURE

Column vector operator, concatenates entries into a column vector
Matrix vectorization operator, produces a column vector by
concatenating columns of the matrix

Diagonalization and block-diagonal matrix operator, puts entries
on the matrix diagonals

Expectation operator

Kronecker product of the matrices A and B

Tracy-Singh product of the matrices A and B

Euclidian norm of the vector a

Weighted norm of the vector a

2-norm of the matrix A (the largest singular value of the matrix)

X1
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Chapter 1

INTRODUCTION

Distributed computing gains importance with development and cheapening of sensor
devices which are widely used in industrial, military and environmental applications [1,2].
Unlike centralized approach, distributed computing benefits from in-network cooperation
making the network more scalable and reducing computational load on the central node.

In this thesis, the problem of distributed estimation as a further development of the
framework introduced in [3,4] is studied. According to this framework, nodes deployed on a
certain region cooperate in the diffusion mode, i.e. they share their estimates with neighbors
and combine collected estimates linearly to process it in a local adaptive least-mean squares
(LMS) filter. Depending on nature of combination weights diffusion LMS strategies can be

classified into two categories: linear combination with 1) constant and 2) adaptive weights.

1.1 Diffusion LMS Strategies with Constant Weights

In this setup neighbor estimates are linearly combined using constant weights. These com-
bination weights are computed according to network topology and connectivity information.
Several combination rules such as Metropolis, Laplacian and nearest-neighborhood were in-
troduced in the literature [3]. Although it is a simple strategy, the collaboration among

nodes make estimation robust to link failures.

1.2 Diffusion LMS Strategies with Adaptive Weights

Contrary to previous approach neighbor estimates are combined using adaptive weights
which are updated to minimize mean-square error (MSE). Three adaptive mixture algorithms
applied to two operation modes are studied. The mixture algorithms produce either convex

combination (where the linear mixture weights are constrained to be nonnegative and sum
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up to one), affine combination (where the linear mixture weights are constrained to sum
up to one) or unconstrained linear combination of nodes’ estimates in the neighborhood.
These mixture approaches applied to adaptive filters showed performance gain in steady-
state [5,6], which makes it reasonable to apply these algorithms in the diffusion framework.
The first operation mode is a pairwise combination of node’s estimate and averaged value
of its neighbor estimates. The second operation mode is a mizture of all nodes’ estimates
within vicinity (including the host node itself) with assigned individual weights. The mixture
weights are updated according to gradient-descent algorithm, hence forming second layer of

adaptation in addition to the existing adaptation used in local LMS filters.

1.3 Contributions

In this thesis five new adaptive diffusion algorithms are proposed and their performance is

compared:

1. Adaptive diffusion using convex mixture;

[\)

. Adaptive diffusion using affine pairwise combination;
. Adaptive diffusion using affine mixture;

3
4. Adaptive diffusion using unconstrained pairwise combination;

ot

. Adaptive diffusion using unconstrained mixture.

Simulations show that in some cases adaptive diffusion LMS algorithms have faster conver-
gence than nonadaptive diffusion algorithm with a cost of bigger MSD and EMSE values in

the steady-state.

1.4 Content

The thesis has the following organization. Chapter 2 covers the problem statement. Chap-
ter 3 describes the non-adaptive diffusion algorithm with constant coefficients. Chapter 4
describes the adaptive diffusion algorithm. Sections 4.3, 4.4, 4.5 describe derivation and for-
mulation of convex, affine and unconstrained mixtures respectively operating in two modes
depicted above. Numerical simulations and performance analysis of all six algorithms are
given within corresponding sections. Conlusion, discussion and future work are given in the

final Chapter 5.
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Chapter 2
PROBLEM STATEMENT
The collaborative estimation problem has the following setup [3]. Assume that there
are N > 1 nodes randomly distributed in some space. Each node k has access to time
realizations {dy(t),ur(t)},k =1,..., N of zero-mean random real data {dy(t), ux(t)}, with

di(t) a scalar measurement and wu(t) regression row vector of size (1 x M) at time ¢. The

aim is to estimate M x 1 unknown vector w® from these measurements, given that:
di(t) = up(t)w® + vi (1), k=1,...,N. (2.1)

Regression vectors and measurement data are gathered among all N nodes into two global

matrices:

Ue = col{uy,ug,...,un} (N x M) (2.2)

d = col{dy,ds,...dyn} (N x 1). (2.3)

The estimation problem is defined as finding such a vector w which minimizes the mean-

square error:

min E||d — Uaw||? (2.4)

where E is an expectation operator. The optimal (in MSE sense) solution is found by using

pojection theorem which implies orthogonality condition [7]:
E[Ul(d-Uw")] =0, (2.5)
so the solution can be expressed in terms of

W = (RS R, (2.6)
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where

RS =E[UIU.] (M x M) and RS, =E[UXd] (M x1). (2.7)

Instead of calculating these correlations using time-averaging with ergodicity assumption, it
is more convenient to use real-time implementation based on adaptive filtering. The block-
diagram of the adaptive filtering approach is shown in Fig. 2.1. Among all adaptive filters

the least-mean squares (LMS) filter is a simple one and it is easy to implement.

Noise v ()

Unknown
w”
Regression .
s%gnal i ()
Uk,

Estimate
I(ci71)

Figure 2.1: Block-diagram of the adaptive filtering procedure.

2.1 Noncooperative LMS

Firstly, consider a single node case without any collaboration. The goal of the adaptive
filtering is to find an estimate ¢ which minimizes the mean-square error (MSE) in the

iterative way:

Y (i) = argmin [e(3)?]. (2.8)

w

A simple solution is to run the LMS algorithm at every node k& independently:

wg) _ 1/115;1;1) K [86%(2’)] |

2 1/}](;*1)
i i ~ | Oex(i
o0 = o~ erli) [f“)]
)

N 29
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This approach does not take advantage of cooperation among nodes.

2.2 Diffusion LMS

In case of collaboration among nodes, the estimates of neighbor nodes are combined to form
a more reliable (in some sense) estimate which is further processed in a local adaptive LMS
filter. One of such distributed algorithms is called combine-then-adapt diffusion least-mean

squares algorithm and defined as [3]:

oV = p (e ey, oY =0
o = ol e (dnl) - ol ) (2.10)

where N}, is a neighborhood of k-th node (nodes connected to k including itself), w,(:_l) and
gZ),(f*l) are local and aggregate estimates of w” respectively, at node k at time i —1 and fy(.) is
a combiner function. There is another class of algorithms similar to (2.10) with inverse order
of operations where the adaptation step precedes combination. Analysis of both combine-
then-adapt (CTA) and adapt-then-combine (ATC) algorithms are given in [8]. In this thesis,
only the CTA strategy is examined. The CTA diffusion LMS algorithm will be referred as
diffusion LMS algorithm.

Possible alternatives for the combiner function fy (%(1'71);[ € Nk> are:

1. Linear combination with constant coefficients (diffusion LMS),

2. Linear combination with adaptive coefficients (adaptive diffusion LMS).

Both variants have some advantages and disadvantages in terms of convergence, implemen-

tation and computational cost.
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Chapter 3

DIFFUSION LEAST-MEAN SQUARES

As it was stated earlier the diffusion LMS algorithm is described using following equa-

tions:

o = a(wiiem), o V=0
o = oY+l (k) - el V),

In the diffusion LMS algorithm combiner function has a form of:

1_1) Z Ckﬂ/)lz Y

leN},

with nonnegative constant coefficients c ;. The aggregate estimate d),(jfl)

(3.2)

can be considered

as a weighted least—squares estimate of w” given estimates of the node k’s neighbors. If these

estimates {wl , | € N} are put in a column vector
¥ 2 col{vf ™ Yiens.
the local weighted least-squares problem can be formed:
min|vxg, — QeklZ,

where

Q = col{ly, Ips,..., I} and

Ck = diag{ckylfM, ceey Ck:,/\/kIM}-

(3.3)

(3.4)

(3.5)
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The solution to (3.4) has a form of

’L 1) Z Z 1)’ (3,6)
leENE pEN; k,p

which puts a constraint on new ¢y < ¢/ ZpGNk Chp:

> =1, Vk (3.7)

lENk

Nonnegative weights ¢y, | € Nj which sup up to one form a convex combination which can

be chosen according to some rule [9-11]. The popular ones are:

1. Metropolis rule,
2. Laplacian rule,

3. Nearest-neighborhood rule.

These rules for choosing coefficients of the combiner function are purely based on network

topology. A useful term describing network topology is degree of a node ny. It is defined as

a number of neighbors connected to the node (including node itself), such that ng = [N
To deal with network topology more compact representation of weghts ¢y ; is introduced.

(N x N) diffusion combination matrix C'is a matrix representation of the weight coefficients:

[Cly = e (3.8)

Also note that C'1 = 1. Using above equations combiner functions are easily defined.

Metropolis rule sets coefficients c;; according to degrees of nodes, n;, and n;:

1
Ccpl=——, if k # [ are linked,
" max (ng, ng)
ek =0, if k and [ not linked, (3.9)
Crk =1 — Z Ch Ly if k=1.

lENk\k
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Laplacian rule is described by the following equations:

C =1y — kL where
L=D—A; with
D = diag {ni,n2,...,ny}and

R = 1/nmax

where Ay is N x N network adjacent matrix formed as

1, if k and [ are linked,
[Adl =

0, otherwise.

Nearest-neighborhood rule is defined as:

lGNk,

ce; =0, otherwise.

3.1 Centralized Network Model

(3.10)

(3.11)

(3.12)

In order to perform analysis, interdependency among nodes should be considered and the

state of the whole network should be accessible. Since lots of linear algebra is involved in

the analysis, all variable are collected into global quantities which are represented by vectors

and matrices:

B0 Leolfy ey (VM <), 60 2 colfg

U; = diag{ua i, - - -, un} (Nx NM),  d;i = col{di(i),...,dn(i)}

The measurement dg (i) obeys a typical model:

dk (Z) = u;“"LUO + ’Uk(’b)

(NM x 1),

(N x 1).

(3.13)
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where vy (4) is an additive noise, with assumption of spatial and temporal independence [3].

By introducing

v; = col{vi(i),...,on(i)} and

w® = Qu° (3.14)

with @) defined in (3.5) it is possible to express all measurements {dg(i),k =1,..., N} using
single equation:

d; = in(o) =+ v;. (3.15)

The diffusion LMS algorithm described by (3.1) is represented using global model with these

equations:
¢(i—1) — Gw(z—l)
P = ¢t + DU (d; — U0 Y) (3.16)
where
D = diag{p1Inr, polns, ..., punIng} (NM x NM) (3.17)

is a diagonal matrix with local step sizes and
G=C®Iy (NMxNM) (3.18)

is a transition matrix with N x N diffusion combination matrix C filled with nonnegative

coefficients ¢ ;. After substitution (3.16) reduces to a single equation:
@D = Gp=Y 4 DUT (d; — U;Gp D). (3.19)

3.2 Stability Analysis of the Diffusion Algorithm

During implementation of the diffusion LMS algorithm the proper choice of the step sizes
W is important. If the step size is very small, convergence will be slow. On contrary, if the
step size is too big, the algorithm will probably diverge. In some applications the statistics

of the regression signal uy; and background noise vy (i) may be known a priori or estimated
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before.
In this section stability analysis of the diffusion LMS algorithm is revealed as it was
reported in [3]. The deviation of the nodes’ estimates from original unknown vector w? is

defined as a global error vector:

P = w©® — @, (3.20)

The evolution of global error vector zz(i) in terms of its previous values and noise is repre-
sented using centralized network model (3.19). Recalling convex combination constraint of
diffusion combination matrix C' it is easy to note that Gw(® = w(®. By substituting w(®

and Gw'® into (3.19), the evolution of ¥ is found to be:

50 = Gu® — Gl — pUT (U + v; - UG
= Gyt~Y — pu? (UZ-GJ@—U n vi>

= (Iny — DULU;) GU=Y — DU ;. (3.21)

Assuming independence of uy, ; from v; and taking expectations of both sides of (3.21) results
in:

E["] = (Iny — DR,) GE[p( Y] (3.22)

where R, = diag{Ry1,..., Ry N} with R, = E[ufzum], i.e. evolution of Qz(i) depends
on network statistics (Iny — DR,,) and topology G. Therefore for stability in the mean

magnitude of all eigenvalues of (Iyyr — DR,) G must be smaller than one:
’)\{(INM —DRU) G} ’< 1. (3.23)

The step sizes py in matrix D should be chosen accordingly to satisfy this criterion:

2

max A\ R )
m:l,..).(,N maw( u,m)

0<pp < (3.24)

Using matrix 2-norm which is defined as a largest singular value of a matrix [12], it is easy
to show that:
[(Unar = DRy) Gll2 < [|(Invr — DRy)2 - [|Gll2- (3.25)
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Noting that (Iyy — DR,,) is a symmetric matrix and G = C ® Iy, (3.25) reduces to:

[Amax (Inyv = DRy) G)| < |Cll2 - [Amax ((Ina — DRy))|- (3.26)

Although not all diffusion combination matrices C' are symmetric, the ones that are gener-
ated using Metropolis, Laplacian and nearest-neighborhood rules have 2-norm equal to one,

IC|l2 = 1, which implies the following relation:

[Amax ((Inyv — DRy) G)| < [Amax ((Inym — DRy)), (3.27)

note that right side of (3.27) is a 2-norm of a noncooperative scheme with G = I s which

means that usually cooperation among nodes has a stabilizing effect on the network [3].

3.3 Mean-Square Transient Analysis

After introducing stability conditions, transient analysis of the network behavior and evolu-
tion of error measures, particularly mean-square deviation (MSD) and excess mean-square
error (EMSE) is given. This is a good tool to compare theoretical expectations and exper-
imental results. Obviously, the analysis is challenging due to interdependency of nodes in
the network. Its detailed derivation is made in [3]. In this thesis only resulting theorem is
given and justified using numerical tools.

Necessary definitions of the quantities used in Theorem 1 are given below. Eigendecom-
position R, = SAST with A = diag{A1,...,Ax} is used to transform several quantities

including:

G=5Tgs

w® = §TwO, (3.28)

The global mean-square deviaton (MSD), (i) is defined as an average of all nodes’ mean-

square deviation values:

N
) 1 ~(3 1 —G
n) 2 = Y EIP = SEIRY (3:29)
k=1
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In a similar way, the global excess mean-square error (EMSE), ((7) is defined as:
N (i) 1 RO
N A RONP I D2 = ZEllb™ )12
C() & 5 3Bt = LRI = pEI IR (330)

3.8.1 Block Operations

In order to compute correlation terms resulting from manipulation with (3.21) and to deal
with block-diagonal matrices (R, and other which are not given here) some advanced linear
algebra methods are needed. Two useful tools, the bvec{} operator and the block Kronecker

product are given below.

Let ¥ be a (NM x NM) block matrix of the form:

Y11 ... XN
=] o (3.31)

YN1 ... XNN

with blocks Xy, € RM*M  The block vectorization operator bvec{} converts matrix ¥ into
a (N?2M? x 1) vector ¢ in two steps [13, 14]. Recall that the standart vec{} operator,
which converts a matrix to a single column vector by vertically concatenating columns of

the matrix, is used to obtain a (M2N x N) matrix %,
VGC{ZH} e VeC{ZlN}
Yy = E : (3.32)

vec{EZn1} ... vec{Znyn}

The same operator vec{} converts ¥, into a single column vector o:
o = bvec{X} £ vec{%,}. (3.33)

Inverse operation is done using bvec™'{} operator, which converts vector o into a (NM x
N M) matrix X.

The block Kronecker product (aslo referred as Tracy-Singh product) of two (NM x NM)
block matrices A and B, which is denoted by A ® B, is defined as a (N2M? x N2M?) block
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matrix whose k, [-th block is given by the M?N x M?N matrix

Ay @B ... Ap®DBiny
[A® Blu £ : : (3.34)

Ay ® Byt ... Am® Byn

where ® denotes the standart Kronecker product. These block operators are used to evaluate

weighted norms of matrices [3]. The most valuable properties of these operators are [13,14]:

bvec{AXB} = (BT ® A)bvec{X} (3.35)

Tr(AT B) = bvec{ A} bvec{B}. (3.36)
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3.8.2  Transient Analysis: Evolution of the Mean-Square Deviation and the Ezcess Mean-

Square Error in the Network

Theorem 1: Consider an adaptive network operating under the diffusion protocol (3.1)
with space-time data {dj(7),ux,;} satisfying (3.13). Assume further that the regressors
uy,; are circularly Gaussian and independent over time and space. The network mean-

square deviation (MSD) and excess mean-square error (EMSE) evolve as follows:

n(i) =n(i = 1) + 6" Fgn — [@ )% 5~ (MSD) (3.37)

(i) = ¢ — 1) + BTF A — [0 @2

Fmy,  (EMSE) (3.38)

with initial conditions 7(—1) = [|w°||? and {(—1) = + @3, respectively .
b = bvec{(A, © Ins)D*A} where A, = diag{o7;,..., UiN} with O?;,k being a variance of

the additive noise at node k. Vectors g, and A¢ of size (N?M? x 1) are defined as:
1 1
Gn = NbveC{INM} and A¢ = Nbvec{A}. (3.39)
Matrix F is given by®:
F= (é @é) [IN2M2 — (INM © AD) — (AD © Inym) + (D O] D)A} (3.40)
where A = diag{ Ay, ..., Ay} with diagonal terms
Ap = diag{A1 @ Ag, ..., A +9AL @ Mg, ..., Ay @ Ay} (3.41)

In the k-th entry of (3.41) AgAL is an outer product, where A\, = vec{A;} and v = 2

(assuming all data is real).

“Note some typographical errors in the original article [3]. In Theorem 1, normalization terms %
were omitted in n(—1) and ¢(—1). Also an unnecessary o term exists in the definition of F in Eq. 69.
on page 3128. The errors were corrected in the next paper on this subject [4].
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3.3.8 Experimental Results versus Theory

In order to compare experimental results and theoretical framework, evolution of MSD and
EMSE was simulated using (3.37) and (3.38) of Theorem 1. A sample network composed
of N = 5 nodes with topology shown in Fig. 3.1 was chosen for Example 1. A vector to
be estimated is w® = [0.3487, —0.8245, 0.2955, —0.2331]7 of length M = 4. All regression
signals uy, ; are realizations of 1-st order Gaussian-Markov process which is a discrete-time

auto-regressive stochastic process obeying the following model:

Upi = Qg1 + \/(mn(i) (3.42)

where ay, is the correlation coefficient and n(i) is a zero-mean unit-variance white Gaussian
noise, n(i) ~ N(0,1). It should be noted that 1-st order Gaussian-Markov process has a
correlation function 7,4 (1) = aika‘él. Background noise vg(7) is a zero-mean white Gaus-
sian noise with variance o, ;. Values of ay, Ui,k and aik are shown in Fig. 3.1. For both
noncooperative and diffusion LMS algorithms the same step size up = 0.007 was chosen
for all nodes. Diffusion LMS strategy uses Metropolis rule for combiner function. In the
experimental part, noncooperative LMS algorithm (2.9) and diffusion algorithm (3.1) were
implemented corresponding MSD and EMSE values were measured and average of 50 ex-
periments was taken. In the theoretical part Eqgs. 3.37 and 3.38 were evaluated using given
parameters for diffusion algorithm and using G = Iy for noncollaborative scenario.

As illustrated in the Fig. 3.2 and Fig. 3.3 experimental results justify the correctness of
Theorem 1. Both MSD and EMSE curves perfectly fit the theoretical expectation. Use of
diffusion strategy improves the accuracy of the LMS algorithm, reduces MSD and EMSE by

7 dB (in other cases even larger) compared to noncooperative algorithm in the steady-state

and fastens convergence.
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Figure 3.1: Example 1: Network topology and statistics.
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Figure 3.2: Example 1: Evolution of global mean-square deviation (MSD) for experimental
(3.29) and theoretical (3.37) behavior.
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Figure 3.3: Example 1: Evolution of global excess mean-square error (EMSE) for experi-
mental (3.30) and theoretical (3.38) behavior.
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Chapter 4

ADAPTIVE DIFFUSION LEAST-MEAN SQUARES

Constant combination weights cj; formed using network rules (Metropolis etc.) rely
only on network topology and do not take into account different SNR values at the nodes.
It would be more useful to add new level of adaption to the system, making combination
weights adaptive and resistant to SNR changes in the network. The aim of the adaptive
diffusion algorithms is to train weighing coefficients such that nodes with higher SNR are
given more weight.

In the adaptive diffusion LMS setup, two different approaches for designing update rule
for combination weights used in formation of aggregate estimate are studied. First class of
algorithms is based on pairwise combination of the node’s own estimate and averaged value
of neighbors’ estimates, second class of algorithms has completely adaptive nature in which
mixture of all nodes’ estimates in the neighborhood (including the node itself) is used as an

aggregate estimate.

4.1 Pairwise Combination Algorithms

In this class of algorithms only two weight coefficients are adapted. The first coefficient
measures contribution of the node’s local estimate ¢](f71). The other one measures the con-
tribution of all neighbor estimates on the average. In a more detailed format, the aggregate

estimate gbl(j_l) has a form of:

67 = APUD £ RO, (1)

~Gi—1 1 i—1

w}g ) _ — Z wl( )’ (4.2)
k 1EN;\k

where )\,(f) is the weight of the host node’s estimate w,(j_l) and X,(CZ) is the weight of the aver-

1)

aged value of the neighbors’ estimates TZ)\](CZ_ . The block-diagram of the pairwise combination
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Figure 4.1: Adaptive diffusion strategy: pairwise combination setup.

setup is shown on Fig. 4.11.
Three possible choices of the weighing coefficients )\,(;) and X,(;) are listed below.

(1) (@)

1. Convex combination: any A, ,/)\\k obeying
AP 3D =1 A X0 € (0,1);

2. Affine combination: any /\,(f),/):,(;) obeying
)\,(j) + /):g) =1;

3. Unconstrained combination: any A(i),X,(j).

The coefficients A,Ef),X,(j) are updated using normalized LMS type of update. Derivation and

use of adaptive diffusion algorithm with pairwise combination setup are explained in the

next sections.

4.2 Mixture Algorithms

This class of algorithms contains adaptation rules for weighing coefficients of all nodes’

estimates in the neighborhood (including the node itself), i.e. mizture of all estimates. The

!Original version of the figure can be found in [15].
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aggregate estimate has a form of:

ot =" e (4.3)

lE./\/k

where individual c](;)l are updated at every time instant ¢. The block-diagram of this mixture

setup is shown in Fig. 4.2. Three possible choices of the weighing coefficients c](;)l are listed

below.

1. Convex combination: c,(;)l obeying
D leN: c,(;)l =1 and V€N, c,(;)l € (0,1);
2. Affine combination: c](;)l obeying
ZlENk c](cl,)l = ]"
(4)

3. Unconstrained combination: e with no constraint.

Adaptation rules for weight coefficients cg)l are based on normalized LMS type of algorithm.
Next sections describe adaptive diffusion LMS algorithms grouped with respect to their con-

straints on selection of the combiner function (convex, affine, unconstrained combinations).

— e ] =
‘wm\
D

N ==

ex(i) = di(i) — up il "

Figure 4.2: Adaptive diffusion strategy: mixture setup.
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4.3 Convex Combiner Function

A convex combiner function is a linear operator which combines estimated vectors into an
(4)

aggregate estimate by weighing them with nonnegative scalar coefficients ¢; ; which sum up

to one:

Ve N, )€ (0,1),

¥l
lENk
for k-th node at time index ¢. This means that convex combiner function completely satisties

constraints peculiar to nonadaptive combiner function in classical diffusion algorithm (see

Eq. 3.6).

4.8.1 Adapting Pairwise Convex Combination Weights Using the LMS Update

Aggregate estimate gb,(:*l) is obtained by summing weighted by some )\,(j) estimate of the

local node 1/1;(;71) and weighted by (1 — )\,(j)) average of all neighbors’ estimates ﬁg’l)

as
described in [3], i.e.
qb](:—l) _ )\g) ](:—1) + (1 _ )\](:)) 1;}(:—1)7 (4.4)
where
/lz)\]gifl) _ nkl_l Z %(1'71)’ (4.5)
leN\k
and ny is a degree of the node k.
Obtained ¢](€i—1) is used to update local estimate @Z)](:_l):
en(i) = dy(i) — iy, (4.6)
Y = oY + mul jen(i). (4.7)

In order to satisfy convex criterion of the combination, the weight )\,(j) should be in the range

)

of [0,1]. This condition is guarantied if )\g is a sigmoidal function of some parameter ag:

(4.8)
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Updating A indirectly is achievable by training a; which should minimize the local mean-

square error:

@ _ (i-1) _Ha 1 Oei (i) 4
BT P <aa§;—l> )
G _ G- ex(i) [ Oeg(i)

where [ is a nonnegative coefficient inserted for normalization purpose. By applying chain

rule we obtain:

Der(i)  Dep(i) OAY

) R Tk (4.11)
0™ A 9alY
with first term calculated from (4.4):
Oey (1) (i-1)  ~(i-1)
== = [P — (4.12)
oA v ;
and second term computed using (4.8),
N - (i-1)
gD =X (A=) (4.13)
Ay
After substituting (4.12) and (4.13), the adaptation rule for aj takes a form of:
i i-1) -1 NG i
A = (ws [0 = 0] ) endn 1 = A
i i 1 i
(l](g) = CL’(f 1 + HaHih;) (414)

ugi|[?

In summary, the pairwise convex combination adaptive diffusion alogrithm is depicted using

following equations:
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L
op V= A;(f)@b{ + ( - ) gy (4.15)
e (i) = di (i) — iy
0 = (us [0 = 6] ) P11 - )
ag) = ag_l) —i—uaH ! Hﬁh ®
V= o0V + el en(i).

4.8.2  Adapting Convex Mizture Weights Using the LMS Update

Contrary to pairwise combination depicted previously in (4.4), this method of aggregating
estimates gives individual adaptive weights to all neighbor estimates. The adaptation rules
used for this purpose are taken from [16] and [17].

Combiner weights are exponential functions of another parameter aSJ_l) which are nor-

malized to satisfy convex criterion:

(i-1)

: exp (ay, )
ol = e (4.16)
> exp(ay,,”)
mGNk
The parameter a,(:l_l) is updated using the LMS algorithm:
2 .
(i) _ =1 _Ha 1 Oej (i)
a,;=a - — , 4.17
K= TP | gD )
4 . ; e li
ol = i) — o 0 [ 0 (1.18)

)

“Turall \ 2af;V

where (3 is a nonnegative coefficient inserted for normalization purpose. By using chain rule

the partial derivative takes a form of:
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with first term

9 (3) .
e(k) = Uk, %_1)
ackl,m
and second term ‘ ‘
80,(;7)m B exp (a,(;,;j))

8&,(;;;1) 8(1](;,;1) ZpENk exp (a,(é;l)

After taking the derivative the second terms becomes:

ac,@n c,(;,)l(l - CI(;,)Z)’ it m=1,
(i-1) o
dayy cg)lc,(jll, if m # 1.

(4.19)

(4.20)

(4.21)

(4.22)

The final adaptation rule is obtained by summarizing 4.3, 4.6, 4.7, 4.16 and above equations:

i—1
) _ exp (aj; )
kT~ 1
> explal,))
mENk
i—1 () i—1
P = Z Cr.1 !
ZGNk

“Il

@0;(5) = ¢;(ffl) + puug, er (D).

(4.23)
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4.8.8  Simulations

In this experiment (Example 2) performance of adaptive diffusion algorithms with convex
combination constraint are compared. Network topology is shown on the left side of Fig. 4.3
on page 26. Parameters of the networks (o, Ui,k» ag’k - see Example 1) are given on the
right side of the same figure. A 10 x 1 vector to be estimated is given below:
w® = [2.3459,0.0893, 2.2103, 0.7440, 0.6762, —0.4959, 1.0007, —1.8874, —1.2499, —0.2327].
The same step size ur = 0.007 at all nodes was chosen for all diffusion strategies. In
all evaluations average of 25 experiments is taken. The goal of this experiment is to see
whether the adaptive strategies improve the accuracy of the agreggate estimate gb,(f_l) which
consequently affects the performance of the core LMS algorithm. Insertion of the second
adaptation layer introduces a source of gradient noise |3] due to interdependency created by
collaboration among nodes. MSD performance of the adaptive strategies are compared to
classical diffusion algorithm with Metropolis rule used as a combiner function. As seen from
Fig. 4.4, with a small penalty of ~1 dB (@54 dB) difference in MSD in steady-state adaptive
diffusion with pairwise convex combination constraint converges to steady-state faster than
classical diffusion LMS by 1000 time samples. If convergence is a priority, adaptive diffusion
algorithm with convex mixture constraint learns even faster (2000 time sample difference) but
with higher penalty of 3 dB (@54 dB). In Fig. 4.5 evolution of particuar )\,(j) of the adaptive
diffusion with pairwise covex combination constraint tuned with u, = 5 and 8 = 6 for some
nodes is shown. Similarly, evolution of ¢ ; weights of the adaptive diffusion algorithm with
convex mixture constraint for u, = 2, § = 5 and k = 4 is shown. Node k is connected to
three neighbors: nodes 3,5, and 9 (see Fig. 4.3). The coefficients convergence to steady values
during first 1500 time samples. In Fig. 4.7 and 4.8 evolution of global MSD errors for adaptive
diffusion LMS with pairwise convex combiner function is shown. In Fig. 4.7, normalization
exponent 8 = 2 is kept constant and effect of changing u, is observed. Increasing the step
size [iq, slightly fastens convergence but leads to higher MSD values. In Fig. 4.8 the step size
e is kept constant and performance for different 3’s is observed. Increasing normalization
exponent (8 leads to lowering of MSD level and fastens convergence at the same time. The

same observation is valid for convex mixture case (see Fig. 4.9 and 4.10).
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Figure 4.3: Example 2: Network topology (left) and statistics (right).
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Figure 4.4: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adaptive
diffusion LMS with convex combiner functions.
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Figure 4.5: Example 2: Evolution of weight coefficients A
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Figure 4.6: Example 2: Evolution of weight coefficients ¢
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Figure 4.7: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adaptive
diffusion LMS with pairwise convex combiner function with constant 5 = 2.
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Figure 4.8: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adaptive
diffusion LMS with pairwise convex combiner function with constant u, = 2.
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Figure 4.9: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adaptive
diffusion LMS with convex mixture combiner function with constant g = 2.
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Figure 4.10: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adap-
tive diffusion LMS with convex mixture combiner function with constant u, = 0.5.
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4.4 Affine Combiner Function

An affine combiner function is a linear operator which combines estimated vectors into an

(%)

aggregate estimate by weighing them with scalar coefficients ¢; ; which sum up to one:

for k-th node at time index ¢. This implies that affine combiner function partially satisties
constraints specific to nonadaptive combiner function in classical diffusion algorithm (see 3.6).
4.4.1 Adapting Pairwise Affine Combination Weights Using the LMS Update

Aggregate function used in this algorithm is similar to those in (4.4). The adaptation rule

for )\,(j_l) is given as:

i i a 1 o€z (i
)\](C):)\](C 1)_“2f ( 6@@))

[ NI
(@) _ -1 _ k(D) [ dex(d)
S P (aA(i‘”

i i—1 ex(i) i—1)
N =N lurlP [% - } ’

where § is a nonnegative coeflicient inserted for normalization purpose. Combining the

above equation with (4.4), (4.5), (4.6) and (4.7) yields the adaptation rule:

i—1 i—1)
W= Y
ZENk\k
o =A§J‘%;‘ S CEr Ve Ko
enli) = di(i) — uiofy " (4.24)

R + puui gen (i)

i i— et i— i—
N =N o O [0 -
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4.4.2  Adapting Affine Mizture Weights Using the LMS Update

For this diffusion strategy affine combination algorithm described in [18] is adopted. The

aggregate estimate qbg_l) is formed using the following equation:

i—1 i—1 i—1 i—1 i—1)
4= T s (1o
lENk\k lENk\k

o =V > Y Y - ul Y (4.25)
leNK\k

Coeffcients ¢y are updated according to the rule given below:

S e Hag 1 [ De(i)
o B2 Jull? \ oY
@0 _ (-1 er(i) [ Oex(i)
Ce1 = Cg1 T HMaf furall? \ gol—D
) k.l
i i-1) ex (1) i1 i-1)
Cl(c,)l = cl(<:,l + Haf H HB Uk, ( ) — ’g/}’(C ,

where 3 is a nonnegative coefficient inserted for normalization purpose. The final adaptation

rule is obtained by summarizing 4.3, 4.6, 4.7 and the above equations:

¢§:—1) _ Z w(z 1) 1— Cl(:,l_l) %(:‘—1

leNK\k lENK\E
ex(i) = di(i) — upi0p " (4.26)
Ui = oY+ e en (i)
V le N\ k update
i i1 ex (i) i1 i1
() i D) [uf = uf].

& c + i Uk,
S 7 ‘
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4.4.8  Simulations

In this experiment the same setup of Example 2 is used including network topology, network
statistics (see Fig. 4.3 on page 26), w’ and universal u; = 0.007.

In Fig. 4.11 and 4.12 evolution of global MSD errors for adaptive diffusion LMS with
pairwise affine combiner function is shown. In Fig. 4.11, normalization exponent g = 2 is
kept constant and effect of changing fi,s is observed. Increasing the step size .y, slightly
fastens convergence but leads to higher MSD values. In Fig. 4.12 the step size p,f is kept
constant and performance for different 8’s is observed. Increasing normalization exponent 3
leads to lowering of MSD level and fastens convergence at the same time. In mixture case,
changes in performance are more noticeable. When  is kept constant, increasing the value
of paf interestingly slows down convergence and decreases MSD error (see Fig. 4.13). If the
step size pqy is kept constant and normalization exponent 3 is increased the convergence
fastens with penalty of increasing MSD value (see Fig. 4.14). In Fig. 4.15 evolution of
particuar )\](;) of the adaptive diffusion with pairwise affine combination constraint tuned
with p1,y = 0.01 and § = 2 for some nodes is shown. Similarly, in Fig. 4.16 evolution of cj;
weights of the adaptive diffusion algorithm with affine mixture constraint for .y = 0.03,

B =2 and k = 4 is shown. Node k is connected to three neighbors: nodes 3,5, and 9 (see

Fig. 4.3). The coefficients convergence to steady values during first 2000 time samples.
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Figure 4.11: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adap-
tive diffusion LMS with pairwise affine combiner function with constant 5 = 5.
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Figure 4.12: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adap-
tive diffusion LMS with pairwise affine combiner function with constant p,y = 0.01.
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Figure 4.13: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adap-
tive diffusion LMS with affine mixture combiner function with constant g = 2.
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Figure 4.14: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adap-
tive diffusion LMS with affine mixture combiner function with constant p,y = 0.005.
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Figure 4.15: Example 2: Evolution of weight coefficients )\,(:) for pairwise affine combination
with pi,f = 0.01 and 8 = 2.
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Figure 4.16: Example 2: Evolution of weight coeflicients c,(;)l for k = 4 of affine mixture with

faf = 0.03 and 38 = 2.
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4.5 Unconstrained Combiner Function

An unconstrained combiner function is a linear operator which combines estimated vectors
into an aggregate estimate by weighing them with scalar coefficients c](;)l which do not carry
any constraint. This implies that unconstrained combiner function does not satisty con-

straints specific to nonadaptive combiner function in classical diffusion algorithm (see 3.6).

4.5.1 Adapting Pairwise Unconstrained Combination Weights Using the LMS Update

This algorithm does not put any constraint on combination weights )\,Ef*l),//\\gfl). The

weights are updated using LMS alogrithm [17]:

T TR [ 9e2(i)
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where § is a nonnegative coeflicient inserted for normalization purpose. Combining the

above equation with (4.1), (4.5), (4.6) and (4.7) yields the adaptation rule:

b= —— 3w
le/\/’k\k
¢(z 1) _)\z 1) w(z 1) +/\(i—l)$l(€i—1)
en(i) = dy(i > —upaey (4.27)
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4.5.2  Adapting Unconstrained Mixture Weights Using the LMS Update

This algorithm is similar to pairwise unconstrained combination update except that adap-

tation is extended to all weights.

S ) un 1 Deg(i)
ol o 2 flurall® \ oY
@ _ (i-1) ep(i) [ Oex(i)
Cr = Cpy MunHUszB acl(jl_l)
@ _ (-1 ex(7) (i-1)
Cei = Gk +MunHukiHBUk7iwl

where 3 is a nonnegative coefficient inserted for normalization purpose. The final adaptation

rule is obtained by summarizing 4.3, 4.6, 4.7 and the above equations:

(i—1) i—1) ,(i—1)
o = Z Cl(e,l 1/11(

1EN}
en(i) = di(i) — up 0y " (4.28)
v = o+ e jen(i)
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4.5.8  Simulations

In this experiment the same setup of Example 2 is used including network topology, network
statistics (see Fig. 4.3 on page 26), w’ and universal u; = 0.007.

In Fig. 4.17 and 4.18 evolution of global MSD errors for adaptive diffusion LMS with
pairwise unconstrained combiner function is shown. In Fig. 4.17, normalization exponent
B = 1 is kept constant and effect of changing p,, is observed. Increasing the step size
tun, does not fasten convergence but leads to higher MSD values. In Fig. 4.18 the step size
Uun 18 kept constant and performance for different 3’s is observed. Increasing normalization
exponent § also increases MSD. For unconstrained mixture case, increasing tt,, and keeping
B constant in some cases fastens convergence (see Fig. 4.19). However, algorithm diverges
for small pi,, and different 5’s (see Fig. 4.20). In Fig. 4.21 evolution of particuar )\,(j) of
the adaptive diffusion with pairwise unconstrained combination tuned with g, = 0.005 and
B =1 for some nodes is shown. Abrupt changes in evolution of \;’s are noticable. Similarly,
in Fig. 4.22 evolution of c¢,; weights of the adaptive diffusion with unconstrained mixture
tuned with fy, = 0.001 and 8 = 2 for £k = 4 is shown. Node k is connected to three
neighbors: nodes 3,5, and 9 (see Fig. 4.3). The coefficients convergence to steady values

during first 10000 time samples.
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Figure 4.17: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adap-
tive diffusion LMS with pairwise unconstrained combiner function with constant § = 1.
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Figure 4.18: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adap-
tive diffusion LMS with pairwise unconstrained combiner function with constant p,, =
0.005.
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Figure 4.19: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adap-
tive diffusion LMS with unconstrained mixture combiner function with constant g = 2.
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Figure 4.20: Example 2: Evolution of global mean-square deviation (MSD) (3.29) for adap-
tive diffusion LMS with unconstrained mixture combiner function with constant i, = 0.005.
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Figure 4.21: Example 2: Evolution of weight coefficients )\,(j for pairwise unconstrained

combination with p,, = 0.005 and 8 = 1.
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Figure 4.22: Example 2: Evolution of weight coefficients c,(;)l for k = 4 of unconstrained

mixture with g, = 0.001 and 8 = 2.
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Chapter 5

CONCLUSION

In this thesis, mean-square transient analysis of MSD and EMSE behavior for diffusion
algorithm described in [3] was implemented. Simulations showed exact match between the-
oretical and experimental evaluations of this behavior. Also it was justified that diffusion
strategies have better MSD and EMSE performance compared to noncooperative LMS al-
gorithm. Five new alogrithms introduced here are highly parameter-dependent and do not
converge to the same MSD and EMSE values in the steady-state when tuned up differently.
This fact makes the comparison with classical diffusion algorithm unfair. However, exper-
imental results showed that in some cases adaptive diffusion LMS algorithm with convex
and affine combination constraints may have faster convergence than nonadaptive diffusion
algorithm reaching the same MSD and EMSE values in the steady-state. Also it should be
noted that adaptive diffusion algorithm with unconstrained combiner function demonstrates
always greater MSD and EMSE values due to dissatisfaction of condition in (3.7).

The main result of this research is that second layer of adaptation does not necessarily
improve performance of the diffusion strategy. Although motivatation is very logical: nodes
with higher SNR, and hence, with more precise estimates, should contribute more to for-
mation the aggregate estimate, other way to get rid of gradient noise introduces by second
adaptation layer should be investigated. On the other hand, other classes of algorithms such
as variable-step size LMS can be used for improvement of the MSD and EMSE performance

of diffusion strategies [19,20].
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