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ABSTRACT 

In this study, underwater ambient noise (UWAN) data are analyzed by means of wavelet 
based (WT) and empirical mode decomposition based (EMD) methods. The UWAN data 
sets are gathered by our custom-made "Bosporus Ambient Noise Acquisition System" 
(BANAS) in the Strait of Istanbul. The data set consists of two subsets of signals recorded 
during two different states: (i) in the absence of ship traffic and (ii) in the presence of ship 
traffic in the line of sight. For signal characterization, the WT and EMD methods, which are 
both known to be appropriate techniques for non-stationary data analysis, are applied. 
Analysis of the variances of both the wavelet detail coefficients (WDC) and intrinsic mode 
functions (IMFs) show that the variances of the first six consequent WDCs (corresponding 
to the frequency range of 40-2500 Hz) and the variances of the first five IMFs of the 
signals collected during the periods of various ships' cruising are found to be greater than 
the variances of the corresponding WDCs and IMFs collected in the tranquil sea. It is 
observed that the WDC and IMF variances reveal useful information about ship presence 
nearby the recording system yielding solutions to ship traffic density estimation problems. 
 

1. INTRODUCTION 

“Bosporus Ambient Noise Acquisition System” was designed and constructed in the scope 
of the “Measuring, Archiving and Modeling of Underwater Ambient Noise in the Strait of 
Istanbul” project which is executed by Istanbul Technical University (ITU) Signal 
Processing Laboratory and supported by The Scientific and Technological Research 
Council of Turkey (TUBITAK). The system consists of 8 hydrophone array, recording 
equipment and transmission lines1. All the data is gathered in the stait of Istanbul which is 
also known as “the Bosporus”. This strait is an approximately 30 km long, 1km wide 
channel that connects the Black sea with the Sea of Marmara. The dept varies between  
30 m and 100 m. Here, the sea conditions are quite different than thoes in calm, deep 
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water. The Bosporus has a heavy ship traffic density with more than 50,000 passing ships 
per year. This number is increasing every year. Furthermore, the strait is preferential 
fishing place with quite a big number of fishing boats. Ferries which carry people between 
Asian and European sides of Turkey are also active during whole year. The data used in 
this study is collected at various sites in Bosporus shown in�Figure 1.  

 

Figure 1: UWAN measurement points in the Strait of Istanbul (Google Maps view). 

 

During gathering of the signals, ship traffic and weather conditions were recorded  to a 
logbook by an observer located nearby the station. Two classes are defined according to 
two different states: UWAN data collected (i) in the absence of ship traffic and (ii) in the 
presence of ship traffic in the line of sight.  A signal segment gathered during absence of 
traffic is shown in Figure 2 a) and its power spectral density is plotted in Figure 2 b).  An 
example to UWAN recorded in the presence of a ship is given in Figure 3 a) and its power 
spectral density is shown in Figure 3 b). The aim of this research is to identify the classes 
using recently developed techniques. Collected underwater ambient noise data is stored 
and then analyzed using wavelet transform based and empirical mode decomposition 
based methods. Studies reveal that underwater noise data show non-stationary behavior 
in the presence of ship traffic. Therefore instead of classical Fourier transform based 
spectral methods these two alternative techniques are applied. These methods are more 
reliable due to the fact that they do not require data to be stationary. In Section 2 brief 
descriptions of these two methods are given, in Section 3 analysis, discussion and the 
results are presented.  



�

Figure 2: a) UWAN signal recorded in the 
absence of ship traffic; b) Its power spectral 
density. 

�

Figure 3: a) UWN signal recorded in the 
presence of a ship; b) Its power spectral 
density. 

 

2. USED METHODS 

In this section wavelet transform and empirical mode decomposition methods are briefly 
described. Definition and application of discrete dyadic wavelet transform are given. The 
dyadic filter bank property of the discrete dyadic wavelet transform is used in the analysis 
of the UWAN signals. Alternatively, empirical mode decomposition and intrinsic mode 
functions are described and the algorithm used in EMD is summarized. For clear 
comprehension, a visual example to sifting process is also provided. 
�

A. Discrete Dyadic Wavelet Transform 

Wavelet transform provides multi-resolution analysis of the signals. This method is based 
on measuring correlation between signal and the mother wavelet function, which is being 
shifted (translated) and scaled in the time span2. If the scale and the translation is 
discretized and varied as the powers of two, then discrete dyadic wavelet transform is 
obtained: 

Xj(k) = 2j=2
1
X

n=¡1

x(n)Ã(2jn¡ k); j; k 2 Z� (1)�

where x(n) is the analyzed signal, Ã  is the mother wavelet, j is scale and k is translation 
indices. Xj(k) is the detail wavelet coefficient at the j

th scale. It is known that dyadic 
wavelet transform acts like a dyadic filter bank and this crucial property is used in this 
research. In Figure 4 frequency ranges of the detail coefficients at different scales are 
given. In this study, variances of the wavelet coefficients are calculated using equation (2) 
where N  is the length of Xj(k). 

varfXjg =

N
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B. Empirical Mode Decomposition 

Empirical mode decomposition is a powerful method for the analysis of non-stationary 
signals3. It should be noted that EMD does not yet have exact mathematical formulation 
and can only be described by an algorithm. In EMD, the signal is decomposed into 
intrinsic mode functions (IMFs) of finite number by passing through a so-called “sifting 
process”. In contrast to classical methods, sifting process does not require a base 
function3. This makes EMD analysis totally adaptive to the nature of the signal. In EMD 
the analyzed signal is expressed as below: 
 
signal = slow oscillations + fast oscillations superimposed on slow oscillations.  

The main idea of this method is to decompose the signal into IMFs which are found by 
catching local oscillations within the signal. The signal x(t) can be expressed as:  

x(t) = r(t) +

J
X

j=1

cj(t)� � (3) 

where x(t) is the analyzed signal, J  is the total number of IMFs, cj(t) is the j-th IMF and 
r(t) is the residue left after sifting of the x(t) signal. For a discrete-time signal of a length 
N  number of the IMFs J  can be estimated using the following equation: 

J ¼ log2(N)� � (4)�

Note that IMFs have two important properties: 

1. The number of local extrema points and the number of zero-crossings in the IMF 
are equal or differ at most by one. 

2. At any time instant mean value of the upper envelope defined by local maxima 
and the lower envelope defined by local minima is equal to zero3. 

 
Second property implies that the envelopes of IMFs should be symmetric with respect to 
time axis. EMD procedure is explained below: 
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 Figure 4: Discrete dyadic wavelet transform as a dyadic filter bank. 



 
EMD Process 

The intrinsic mode functions of the signal are estimated by operation defined by the 
following steps: 

1. Local minima and local maxima points of the x(t) signal are marked. 
2. A line is fitted between local maxima points (generally by means of cubic spline 

interpolation). The same operation is applied to local minima points. These lines 
represent upper and lower envelopes emax(t) and emin(t) 

3. Average oscillation m(t) (mean envelope) of the signal is obtained by taking an 
average of these envelopes: 

m(t) =
emax(t) + emin(t)

2
� � ���

4. Average oscillation is extracted from the original signal: 

d(t) = x(t)¡m(t)
�

5. IMF test is applied to the signal d(t). If d(t) does not possess properties of an IMF, 
then the steps depicted above are repeated on d(t). Otherwise, the sifting process 
is stopped and the first IMF of the original signal x(t) is obtained. This IMF is 
subtracted from the original signal x(t) and the first four steps are applied to the 
residual signal. This process is repeated until all the IMFs are found3. 

 
First four steps of the procedure represent sifting process where overall algorithm is called 
EMD process. In Figure 5, single step iteration of the sifting process is shown as an 
example. It is known that in the second step implementation of the “cubic spline” method 
for the interpolation gives good results4. The power of the residue signal is used as a 
criterion for termination of the sifting process. If the power of the residue is under some 
threshold then the iteration is stopped. For the threshold usually a relatively small 
percentage of the original signal is used as the threshold. EMD analysis can be 
considered as an adaptive filter bank similar to those in the wavelet transform5. In this 
study EMD is used to decompose the UWAN signals into intrinsic modes with different 
frequency contents. Then the variances (energies) of these modes are compared for two 
different classes of data: the signals recorded in the presence of ship traffic and the 
signals recorded in the absence of ship traffic in the line of sight. Variances of the IMFs 
can be calculated according to equation (5) where cj is the j-th IMF and N  is length of the 
signal. 

varfcj(k)g =
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Figure 5: One iteration of the sifting process. 
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3. ANALYSIS AND RESULTS 

Six data sets corresponding to cruising of six ships and four data sets of relatively tranquil 
environment with no ship traffic in the line of sight were analyzed. The sampling 
frequency of A/D converter was selected as 5000 Hz. Data analysis was performed in the 
MATLAB® environment. Length of all noise data sets was chosen as 6 seconds.  
 
In Figure 6 variances of the wavelet coefficients obtained from dyadic wavelet 
decomposition of the underwater ambient noise data, which were taken while sailing of 
six different ships, are shown. Solid line represents average variances of the wavelet 
coefficients of the signal recorded in the absence of ship traffic. It is observed that 
variances of the first six wavelet detail coefficients of the underwater noise recorded in the 
presence of ship traffic are greater by 15-20 dB than the variances of the same 
coefficients pertaining to the signals recorded in the absence of ship traffic. It should be 
noted that first six wavelet coefficients correspond to the frequency range of 40-2500 Hz. 
 
In Figure 7 variances of IMFs of the underwater ambient noise signals, which were 
recorded in six different time periods in the presence of six different ships, are shown. 
The number of IMFs for signals in both classes varies from 13 to 15 as required by  
equation (4). Solid line represents average variances of the IMFs of four data sets 
recorded during absence ship traffic in the line of sight. First IMFs, which represent  fast 
oscillations, are located on the right side of the plot.  In Figure 7 results similar to those in 
the wavelet transform analysis can be observed. Behavior of the first five IMFs’ variances 
of the signals recorded in the presence of ship traffic are greater by 15-20 dB than the 
signals recorded in the absence of ship traffic in the line of sight. This observation may be 
used for estimation of ship traffic density.  
�
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Figure 6: Variances of the wavelet coefficients pertaining to two classes of data: UWN recorded in 
the presence of ship traffic in the line of sight and UWAN recorded in the absence of ship traffic. 
Solid line represents average variances of the second class. 
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Figure 7: Variances of the IMFs pertaining to two classes of data: UWN recorded in the presence 
of ship traffic in the line of sight and UWAN recorded in the absence of ship traffic. Solid line 
represents average variances of the second class. 
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